#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Inter-method and anatomical correlates of episodic memory tests in the Alzheimer’s Disease spectrum


Autoři: Felipe Kenji Sudo aff001;  Andrea Silveira de Souza aff001;  Claudia Drummond aff001;  Naima Assuncao aff001;  Alina Teldeschi aff001;  Natalia Oliveira aff001;  Fernanda Rodrigues aff001;  Gustavo Santiago-Bravo aff001;  Victor Calil aff001;  Gabriel Lima aff001;  Pilar Erthal aff001;  Gabriel Bernardes aff001;  Marina Monteiro aff001;  Fernanda Tovar-Moll aff001;  Paulo Mattos aff001
Působiště autorů: D’Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil aff001;  Department of Speech and Hearing Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil aff002;  Morphological Sciences Program, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil aff003;  Post-Graduation Program in Clinical Medicine, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil aff004;  Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223731

Souhrn

Background

Episodic memory impairments have been described as initial clinical findings in the Alzheimer’s Disease (AD) spectrum, which could be associated with the presence of early hippocampal dysfunction. However, correlates between performances in neuropsychological tests and hippocampal volumes in AD were inconclusive in the literature. Divergent methods to assess episodic memory have been depicted as a major source of heterogeneity across studies.

Methods

We examined correlates among performances in three different delayed-recall tasks (Rey-Auditory Verbal-Learning Test–RAVLT, Logical Memory and Visual Reproduction subtests from the Wechsler Memory Scale) and fully-automated volumetric measurements of the hippocampus (estimated using Neuroquant®) of 83 older subjects (47 controls, 27 Mild Cognitive Impairment individuals and 9 participants with Dementia due to AD).

Results

Inter-method correlations of episodic memory performances were at most moderate. Scores in the RAVLT predicted up to 48% of variance in HOC (Hippocampal Occupancy Score) among subjects in the AD spectrum.

Discussion

Tests using different stimuli (verbal or visual) and presenting distinct designs (word list, story or figure learning) may assess divergent aspects in episodic memory, with heterogeneous anatomical correlates.

Conclusions

Different episodic memory tests might not assess the same construct and should not be used interchangeably. Scores in RAVLT may correlate with the presence of neurodegeneration in AD.

Klíčová slova:

Learning – Cognitive impairment – Alzheimer's disease – Memory – Vision – Neuropsychological testing – Memory recall – Hippocampus


Zdroje

1. Allen TA, Fortin NJ. The evolution of episodic memory. Proc Natl Acad Sci. 2013;110: 10379–10386. doi: 10.1073/pnas.1301199110 23754432

2. Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging. 2009;30: 1711–1723. doi: 10.1016/j.neurobiolaging.2008.01.010 18346820

3. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14: 535–562. doi: 10.1016/j.jalz.2018.02.018 29653606

4. Weissberger GH, Strong JV, Stefanidis KB, Summers MJ, Bondi MW, Stricker NH. Diagnostic Accuracy of Memory Measures in Alzheimer’s Dementia and Mild Cognitive Impairment: a Systematic Review and Meta-Analysis. Neuropsychol Rev. 2017;27: 354–388. doi: 10.1007/s11065-017-9360-6 28940127

5. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 2013.

6. Morey RA, Petty CM, Xu Y, Pannu Hayes J, Wagner HR, Lewis DV, et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage. 2009;45: 855–866. doi: 10.1016/j.neuroimage.2008.12.033 19162198

7. Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund L-O, Simmons A, et al. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging. 2010;31: 1375–1385. doi: 10.1016/j.neurobiolaging.2010.01.022 20447732

8. Rugg MD, Vilberg KL, Mattson JT, Yu SS, Johnson JD, Suzuki M. Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia. 2012;50: 3070–3079. doi: 10.1016/j.neuropsychologia.2012.06.004 22732490

9. Baek MJ, Kim HJ, Kim S. Comparison between the Story Recall Test and the Word-List Learning Test in Korean patients with mild cognitive impairment and early stage of Alzheimer’s disease. J Clin Exp Neuropsychol. 2012;34: 396–404. doi: 10.1080/13803395.2011.645020 22263656

10. Zahodne LB, Bowers D, Price CC, Bauer RM, Nisenzon A, Foote KD, et al. The Case for Testing Memory With Both Stories and Word Lists Prior to DBS Surgery for Parkinson’s Disease. Clin Neuropsychol. 2011;25: 348–358. doi: 10.1080/13854046.2011.562869 21491347

11. Bayram E, Caldwell JZK, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer’s disease. Alzheimers Dement Transl Res Clin Interv. 2018;4: 395–413. doi: 10.1016/j.trci.2018.04.007 30229130

12. Min J, Moon W-J, Jeon JY, Choi JW, Moon Y-S, Han S-H. Diagnostic Efficacy of Structural MRI in Patients With Mild-to-Moderate Alzheimer Disease: Automated Volumetric Assessment Versus Visual Assessment. Am J Roentgenol. 2017;208: 617–623. doi: 10.2214/AJR.16.16894 28075620

13. Menendez-Gonzalez M, Lopz-Muniz A, Vega JA, Salas-Pacheco JM, Arias-CarriÃ3n O. MTA index: a simple 2D-method for assessing atrophy of the medial temporal lobe using clinically available neuroimaging. Front Aging Neurosci. 2014;6. doi: 10.3389/fnagi.2014.00006

14. Stelmokas J, Yassay L, Giordani B, Dodge HH, Dinov ID, Bhaumik A, et al. Translational MRI Volumetry with NeuroQuant: Effects of Version and Normative Data on Relationships with Memory Performance in Healthy Older Adults and Patients with Mild Cognitive Impairment. Han D, editor. J Alzheimers Dis. 2017;60: 1499–1510. doi: 10.3233/JAD-170306 29060939

15. Brewer JB, Magda S, Airriess C, Smith ME. Fully-Automated Quantification of Regional Brain Volumes for Improved Detection of Focal Atrophy in Alzheimer Disease. Am J Neuroradiol. 2009;30: 578–580. doi: 10.3174/ajnr.A1402 19112065

16. Ochs AL, Ross DE, Zannoni MD, Abildskov TJ, Bigler ED, For the Alzheimer’s Disease Neuroimaging Initiative. Comparison of Automated Brain Volume Measures obtained with NeuroQuant® and FreeSurfer: Automated Brain Volume Measures. J Neuroimaging. 2015;25: 721–727. doi: 10.1111/jon.12229 25727700

17. Luo W, Airriess C, Albright J. The NeuroQuant Normative Database. Comparing Individual Brain Structures. [Internet]. CorTechs Labs—White Paper; 2015. Available: https://www.cortechslabs.com/wp-content/uploads/2018/10/Normative-Database-White-Paper.pdf

18. Ottoy J, Niemantsverdriet E, Verhaeghe J, De Roeck E, Struyfs H, Somers C, et al. Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and 18F-FDG-PET imaging. NeuroImage Clin. 2019;22: 101771. doi: 10.1016/j.nicl.2019.101771 30927601

19. Brucki SMD, Nitrini R, Caramelli P, Bertolucci PHF, Okamoto IH. Sugestões para o uso do mini-exame do estado mental no Brasil. Arq Neuropsiquiatr. 2003;61: 777–781. doi: 10.1590/s0004-282x2003000500014 14595482

20. Paula JJ de, Melo LPC, Nicolato R, Moraes EN de, Bicalho MA, Hamdan AC, et al. Fidedignidade e validade de construto do Teste de Aprendizagem Auditivo-Verbal de Rey em idosos brasileiros. Arch Clin Psychiatry São Paulo. 2012;39: 19–23. doi: 10.1590/S0101-60832012000100004

21. Spedo CT. Adaptação transcultural e propriedades psicométricas do subteste Visual Reproduction (Reprodução Visual I e II) da Wechsler Memory Scale—Fourth Edition (WMS-IV), (Escalas de Memória de Wechsler) para uma população do Brasil. Faculdade de Medicina de Ribeirão Preto. 2012.

22. Camozzato AL, Kochhann R, Simeoni C, Konrath CA, Pedro Franz A, Carvalho A, et al. Reliability of the Brazilian Portuguese version of the Neuropsychiatric Inventory (NPI) for patients with Alzheimer’s disease and their caregivers. Int Psychogeriatr. 2008;20. doi: 10.1017/S1041610207006254 18257965

23. Paradela EMP, Lourenço RA, Veras RP. Validação da escala de depressão geriátrica em um ambulatório geral. Rev Saúde Pública. 2005;39: 918–923. doi: 10.1590/s0034-89102005000600008 16341401

24. Santos RL dos Virtuoso Júnior JS. Confiabilidade da versão brasileira da Escala de Atividades Instrumentais da Vida Diária. Rev Bras Em Promoção Saúde. 2008; 290–296. doi: 10.5020/18061230.2008.p290

25. Labs CorTechs. HOC: A predictor of disease progression from MCI to Alzheimer’s disease [Internet]. 2015. Available: https://www.cortechslabs.com/hoc/

26. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7: 270–279. doi: 10.1016/j.jalz.2011.03.008 21514249

27. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7: 263–269. doi: 10.1016/j.jalz.2011.03.005 21514250

28. Thorogood A, Mäki-Petäjä-Leinonen A, Brodaty H, Dalpé G, Gastmans C, Gauthier S, et al. Consent recommendations for research and international data sharing involving persons with dementia. Alzheimers Dement. 2018;14: 1334–1343. doi: 10.1016/j.jalz.2018.05.011 30293575

29. Palmer BW, Harmell AL, Pinto LL, Dunn LB, Kim SYH, Golshan S, et al. Determinants of Capacity to Consent to Research on Alzheimer’s Disease. Clin Gerontol. 2017;40: 24–34. doi: 10.1080/07317115.2016.1197352 28154452

30. Ghasemi A, Zahediasl S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int J Endocrinol Metab. 2012;10: 486–489. doi: 10.5812/ijem.3505 23843808

31. Dunnett CW. Pairwise Multiple Comparisons in the Unequal Variance Case. J Am Stat Assoc. 1980;75: 796–800. doi: 10.1080/01621459.1980.10477552

32. Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J Anesthesiol. 2018;71: 353–360. doi: 10.4097/kja.d.18.00242 30157585

33. Schober P, Boer C, Schwarte LA. Correlation Coefficients: Appropriate Use and Interpretation. Anesth Analg. 2018;126: 1763–1768. doi: 10.1213/ANE.0000000000002864 29481436

34. Bäckman L, Jones S, Berger A-K, Laukka EJ, Small BJ. Cognitive impairment in preclinical Alzheimer’s disease: A meta-analysis. Neuropsychology. 2005;19: 520–531. doi: 10.1037/0894-4105.19.4.520 16060827

35. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimers Dement. 2013;9: e111–e194. doi: 10.1016/j.jalz.2013.05.1769 23932184

36. Ezzati A, Katz MJ, Zammit AR, Lipton ML, Zimmerman ME, Sliwinski MJ, et al. Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults. Neuropsychologia. 2016;93: 380–385. doi: 10.1016/j.neuropsychologia.2016.08.016 27542320

37. Ekstrom AD, Bookheimer SY. Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain. Learn Amp Mem. 2007;14: 645–654. doi: 10.1101/lm.575107 17893237

38. Tomadesso C, Perrotin A, Mutlu J, Mézenge F, Landeau B, Egret S, et al. Brain structural, functional, and cognitive correlates of recent versus remote autobiographical memories in amnestic Mild Cognitive Impairment. NeuroImage Clin. 2015;8: 473–482. doi: 10.1016/j.nicl.2015.05.010 26106572

39. Glisky EL, Polster MR, Routhieaux BC. Double dissociation between item and source memory. Neuropsychology. 1995;9: 229–235. doi: 10.1037/0894-4105.9.2.229

40. Passaro AD, Elmore LC, Ellmore TM, Leising KJ, Papanicolaou AC, Wright AA. Explorations of object and location memory using fMRI. Front Behav Neurosci. 2013;7. doi: 10.3389/fnbeh.2013.00007

41. Pasquier F, Grymonprez L, Lebert F, Van der Linden M. Memory Impairment Differs in Frontotemporal Dementia and Alzhemier’s Disease. Neurocase. 2001;7: 161–171. doi: 10.1093/neucas/7.2.161 11320163

42. Miotto EC, Balardin JB, Savage CR, Martin M da GM, Batistuzzo MC, Amaro Junior E, et al. Brain regions supporting verbal memory improvement in healthy older subjects. Arq Neuropsiquiatr. 2014;72: 663–670. doi: 10.1590/0004-282x20140120 25252229

43. Wolk DA, Dickerson BC. Fractionating verbal episodic memory in Alzheimer’s disease. NeuroImage. 2011;54: 1530–1539. doi: 10.1016/j.neuroimage.2010.09.005 20832485

44. Cheke LG, Clayton NS. Do different tests of episodic memory produce consistent results in human adults? Learn Mem. 2013;20: 491–498. doi: 10.1101/lm.030502.113 23955172

45. Shing YL, Werkle-Bergner M, Li S-C, Lindenberger U. Associative and strategic components of episodic memory: A life-span dissociation. J Exp Psychol Gen. 2008;137: 495–513. doi: 10.1037/0096-3445.137.3.495 18729712

46. Sperling G. Successive approximations to a model for short term memory. Acta Psychol (Amst). 1967;27: 285–292. 6062221

47. Barker GRI, Banks PJ, Scott H, Ralph GS, Mitrophanous KA, Wong L-F, et al. Separate elements of episodic memory subserved by distinct hippocampal–prefrontal connections. Nat Neurosci. 2017;20: 242. doi: 10.1038/nn.4472 28067902

48. Gleissner U, Helmstaedter C, Elger CE. Right hippocampal contribution to visual memory: a presurgical and postsurgical study in patients with temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 1998;65: 665–669. doi: 10.1136/jnnp.65.5.665 9810934

49. Papanicolaou AC. The Hippocampus and Memory of Verbal and Pictorial Material. Learn Mem. 2002;9: 99–104. doi: 10.1101/lm.44302 12074997

50. Royall DR, Lauterbach EC, Cummings JL, Reeve A, Rummans TA, Kaufer DI, et al. Executive Control Function: A Review of Its Promise and Challenges for Clinical Research. A Report From the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci. 2002;14: 377–405. doi: 10.1176/jnp.14.4.377 12426407


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#