Measuring egocentric distance perception in virtual reality: Influence of methodologies, locomotion and translation gains
Autoři:
Philipp Maruhn aff001; Sonja Schneider aff001; Klaus Bengler aff001
Působiště autorů:
Chair of Ergonomics, Department of Mechanical Engineering, Technical University of Munich, Munich, Bavaria, Germany
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224651
Souhrn
Virtual reality has become a popular means to study human behavior in a wide range of settings, including the role of pedestrians in traffic research. To understand distance perception in virtual environments is thereby crucial to the interpretation of results, as reactions to complex and dynamic traffic scenarios depend on perceptual processes allowing for the correct anticipation of future events. A number of approaches have been suggested to quantify perceived distances. While previous studies imply that the selected method influences the estimates’ accuracy, it is unclear how the respective estimates depend on depth information provided by different perceptual modalities. In the present study, six methodological approaches were compared in a virtual city scenery. The respective influence of visual and non-visual cues was investigated by manipulating the ratio between visually perceived and physically walked distances. In a repeated measures design with 30 participants, significant differences between methods were observed, with the smallest error occurring for visually guided walking and verbal estimates. A linear relation emerged between the visual-to-physical ratio and the extent of underestimation, indicating that non-visual cues during walking affected distance estimates. This relationship was mainly evident for methods building on actual or imagined walking movements and verbal estimates.
Klíčová slova:
Cognition – Eyes – Sensory perception – Vision – Biological locomotion – Virtual reality – Target detection – Distance measurement
Zdroje
1. Lehsing C, Feldstein IT. Urban interaction—getting vulnerable road users into driving simulation. In: Bengler K, Drüke J, Hoffmann S, Manstetten D, Neukum A, editors. UR:BAN Human Factors in Traffic. Wiesbaden: Springer Fachmedien Wiesbaden; 2018. p. 347–362.
2. Doric I, Frison AK, Wintersberger P, Riener A, Wittmann S, Zimmermann M, et al. A Novel Approach for Researching Crossing Behavior and Risk Acceptance. In: Green P, Pfleging B, Kun AL, Liang Y, Meschtscherjakov A, Fröhlich P, editors. Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct—Automotive’UI 16. New York, New York, USA: ACM Press; 2016. p. 39–44.
3. Sobhani A, Farooq B. Impact of smartphone distraction on pedestrians’ crossing behaviour: An application of head-mounted immersive virtual reality. Transportation Research Part F: Traffic Psychology and Behaviour. 2018;58:228–241. doi: 10.1016/j.trf.2018.06.020
4. Renner RS, Velichkovsky BM, Helmert JR. The perception of egocentric distances in virtual environments—A review. ACM Computing Surveys. 2013;46(2):1–40. doi: 10.1145/2543581.2543590
5. Peer A, Ponto K. Evaluating perceived distance measures in room-scale spaces using consumer-grade head mounted displays. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI). IEEE; 2017. p. 83–86.
6. Watson MR, Enns JT. Depth Perception. In: Ramachandran VS, editor. Encyclopedia of human behavior. Boston: Academic Press; 2012. p. 690–696.
7. Messing R, Durgin FH. Distance Perception and the Visual Horizon in Head-Mounted Displays. ACM Transactions on Applied Perception. 2005;2(3):234–250. doi: 10.1145/1077399.1077403
8. Armbrüster C, Wolter M, Kuhlen T, Spijkers W, Fimm B. Depth perception in virtual reality: Distance estimations in peri- and extrapersonal space. Cyberpsychology & behavior: the impact of the Internet, multimedia and virtual reality on behavior and society. 2008;11(1):9–15. doi: 10.1089/cpb.2007.9935
9. Wexler M, van Boxtel JJA. Depth perception by the active observer. Trends in cognitive sciences. 2005;9(9):431–438. doi: 10.1016/j.tics.2005.06.018 16099197
10. Harris LR, Jenkin M, Zikovitz DC. Visual and non-visual cues in the perception of linear self motion. Experimental brain research. 2000;135(1):12–21. doi: 10.1007/s002210000504 11104123
11. Finnegan DJ. Compensating for Distance Compression in Virtual Audiovisual Environments [Doctoral thesis]. University of Bath. Bath; 2017.
12. Battaglia PW, Kersten D, Schrater PR. How haptic size sensations improve distance perception. PLoS computational biology. 2011;7(6):e1002080. doi: 10.1371/journal.pcbi.1002080 21738457
13. Warren WH Jr, Kay BA, Zosh WD, Duchon AP, Sahuc S. Optic flow is used to control human walking. Nature Neuroscience. 2001;4:213 EP –. doi: 10.1038/84054 11175884
14. Wann JP, Rushton S, Mon-Williams M. Natural problems for stereoscopic depth perception in virtual environments. Vision research. 1995;35(19):2731–2736. doi: 10.1016/0042-6989(95)00018-u 7483313
15. Schneider S, Maruhn P, Bengler K. Locomotion, Non-Isometric Mapping and Distance Perception in Virtual Reality. In: Association for Computing Machinery, editor. Proceedings of the 2018 10th International Conference on Computer and Automation Engineering—ICCAE 2018. New York, New York, USA: ACM Press; 2018. p. 22–26.
16. Waller D, Richardson AR. Correcting distance estimates by interacting with immersive virtual environments: effects of task and available sensory information. Journal of experimental psychology Applied. 2008;14(1):61–72. doi: 10.1037/1076-898X.14.1.61 18377167
17. Kelly JW, Cherep LA, Klesel B, Siegel ZD, George S. Comparison of Two Methods for Improving Distance Perception in Virtual Reality. ACM Transactions on Applied Perception. 2018;15(2):1–11.
18. Kelly JW, Hammel WW, Siegel ZD, Sjolund LA. Recalibration of perceived distance in virtual environments occurs rapidly and transfers asymmetrically across scale. IEEE transactions on visualization and computer graphics. 2014;20(4):588–595. doi: 10.1109/TVCG.2014.36 24650986
19. Frenz H, Lappe M. Absolute travel distance from optic flow. Vision research. 2005;45(13):1679–1692. doi: 10.1016/j.visres.2004.12.019 15792843
20. Lappe M, Frenz H. Visual estimation of travel distance during walking. Experimental brain research. 2009;199(3-4):369–375. doi: 10.1007/s00221-009-1890-6 19533107
21. Sun HJ, Campos JL, Chan GSW. Multisensory integration in the estimation of relative path length. Experimental brain research. 2004;154(2):246–254. doi: 10.1007/s00221-003-1652-9 14685814
22. Campos JL, Butler JS, Bülthoff HH. Multisensory integration in the estimation of walked distances. Experimental brain research. 2012;218(4):551–565. doi: 10.1007/s00221-012-3048-1 22411581
23. Lappe M, Jenkin M, Harris LR. Travel distance estimation from visual motion by leaky path integration. Experimental brain research. 2007;180(1):35–48. doi: 10.1007/s00221-006-0835-6 17221221
24. Klein E, Swan JE, Schmidt GS, Livingston MA, Staadt OG. Measurement Protocols for Medium-Field Distance Perception in Large-Screen Immersive Displays. In: Steed A, editor. IEEE Virtual Reality Conference, 2009. Piscataway, NJ: IEEE; 2009. p. 107–113.
25. Kelly JW, Cherep LA, Siegel ZD. Perceived space in the HTC Vive. ACM Transactions on Applied Perception. 2017;15(1):1–16. doi: 10.1145/3106155
26. Grechkin TY, Nguyen TD, Plumert JM, Cremer JF, Kearney JK. How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Transactions on Applied Perception. 2010;7(4):1–18. doi: 10.1145/1823738.1823744
27. Plumert JM, Kearney JK, Cremer JF, Recker K. Distance perception in real and virtual environments. ACM Transactions on Applied Perception. 2005;2(3):216–233. doi: 10.1145/1077399.1077402
28. Ziemer CJ, Plumert JM, Cremer JF, Kearney JK. Estimating distance in real and virtual environments: Does order make a difference? Attention, perception & psychophysics. 2009;71(5):1095–1106.
29. Bruder G, Sanz FA, Olivier AH, Lecuyer A. Distance estimation in large immersive projection systems, revisited. In: 2015 IEEE Virtual Reality (VR). IEEE; 2015. p. 27–32.
30. Interrante V, Ries B, Lindquist J, Anderson L. Elucidating Factors that can Facilitate Veridical Spatial Perception in Immersive Virtual Environments. In: Sherman W, editor. IEEE Virtual Reality Conference, 2007. Piscataway, NJ: IEEE Service Center; 2007. p. 11–18.
31. IBM Corp. IBM SPSS Statistics for Windows, Version 24.0; Released 2016.
32. RStudio Team. RStudio: Integrated Development Environment for R; 2016. Available from: http://www.rstudio.com/.
33. Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Saulius Lukauskas, David C Gemperline, et al. Mwaskom/Seaborn: V0.8.1 (September 2017); 2017.
34. Pinheiro J, Douglas B, DebRoy S, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models; 2018. Available from: https://CRAN.R-project.org/package=nlme.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs