cgmanalysis: An R package for descriptive analysis of continuous glucose monitor data
Autoři:
Tim Vigers aff001; Christine L. Chan aff001; Janet Snell-Bergeon aff002; Petter Bjornstad aff001; Philip S. Zeitler aff001; Gregory Forlenza aff002; Laura Pyle aff001
Působiště autorů:
Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
aff001; Barbara Davis Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
aff002; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0216851
Souhrn
Continuous glucose monitoring (CGM) is an essential part of diabetes care. Real-time CGM data are beneficial to patients for daily glucose management, and aggregate summary statistics of CGM measures are valuable to direct insulin dosing and as a tool for researchers in clinical trials. Yet, the various commercial systems still report CGM data in disparate, non-standard ways. Accordingly, there is a need for a standardized, free, open-source approach to CGM data management and analysis. A package titled cgmanalysis was developed in the free programming language R to provide a rapid, easy, and consistent methodology for CGM data management, summary measure calculation, and descriptive analysis. Variables calculated by our package compare well to those generated by various CGM software, and our functions provide a more comprehensive list of summary measures available to clinicians and researchers. Consistent handling of CGM data using our R package may facilitate collaboration between research groups and contribute to a better understanding of free-living glucose patterns.
Klíčová slova:
Data management – Glucose – Blood sugar – Software tools – Open source software – Programming languages
Zdroje
1. DeSalvo DJ, Miller KM, Hermann JM, Maahs DM, Hofer SE, Clements MA, et al. Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: International comparison from the T1D Exchange and DPV Initiative. Pediatr Diabetes 2018; 19(7): 1271–1275. doi: 10.1111/pedi.12711 29923262
2. Beck RW, Bergenstal RM, Riddlesworth TD, Kollman C, Li Z, Brown AS, et al. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care 2019; 42(3): 400–405. doi: 10.2337/dc18-1444 30352896
3. Bergenstal RM, Beck RW, Close KL, Grunberger G, Sacks DB, Kowalski A, et al. Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes Care 2018; 41(11): 2275–2280. doi: 10.2337/dc18-1581 30224348
4. Hernandez TL, Barbour LA. A standard approach to continuous glucose monitor data in pregnancy for the study of fetal growth and infant outcomes. Diabetes Technol Ther 2013; 15(2): 172–9. doi: 10.1089/dia.2012.0223 23268584
5. Hill NR, Oliver NS, Choudhary P, Levy JC, Hindmarsh P, Matthews DR. Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther 2011; 13(9): 921–8. doi: 10.1089/dia.2010.0247 21714681
6. Sechterberger MK, Luijf YM, Devries JH. Poor agreement of computerized calculators for mean amplitude of glycemic excursions. Diabetes Technol Ther 2014; 16(2): 72–5. doi: 10.1089/dia.2013.0138 24191760
7. Zhang XD, Zhang Z, Wang D. CGManalyzer: an R package for analyzing continuous glucose monitoring studies. Bioinformatics 2018; 34(9): 1609–1611. doi: 10.1093/bioinformatics/btx826 29315360
8. Danne T, Nimri R, Battelino T, Bergenstal R, Close KL, DeVries JH, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017; 40(12): 1631–1640. doi: 10.2337/dc17-1600 29162583
9. Baghurst PA. Calculating the mean amplitude of glycemic excursion from continuous glucose monitoring data: an automated algorithm. Diabetes Technol Ther 2011; 13(3): 296–302. doi: 10.1089/dia.2010.0090 21291334
10. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009; 42(2): 377–81. doi: 10.1016/j.jbi.2008.08.010 18929686
11. Tukey JW. Exploratory data analysis. 1st ed. Reading MA: Addison-Wesely; 1970.
12. Chambers JM, Hastie T. Statistical models in S. Boca Raton, FL: Chapman & Hall/CRC; 1992.
13. Wood SN. mgcv: GAMs and generalized ridge regression for R. R News 2001; 1(2): 20–25.
14. O'Sullivan F, Yandell BS, Raynor WJ. Automatic Smoothing of Regression Functions in Generalized Linear Models. J Am Stat Assoc 1986; 81(393): 96–103.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis