Comparison of cardiorespiratory fitness between preschool children with normal and excess body adipose ~ An observational study
Autoři:
Sheng-Hui Tuan aff001; Chien-Hui Li aff001; Shu-Fen Sun aff003; Min-Hui Li aff003; I-Hsiu Liou aff003; Tzu-Ping Weng aff004; I-Hsuan Chen aff004; Ko-Long Lin aff003
Působiště autorů:
Department of Rehabilitation Medicine, Cishan Hospital, Ministry of Health and Welfare, Cishan District, Kaohsiung City, Taiwan (R.O.C.)
aff001; Department of Physical Therapy, Shu-Zen junior College of Medicine and Management, Luzhu Dist., Kaohsiung City, Taiwan (R.O.C.)
aff002; Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Zuoying Dist., Kaohsiung City, Taiwan (R.O.C.)
aff003; Department of Physical Therapy, Foo-Yin University, Daliao Dist., Kaohsiung City, Taiwan (R.O.C.)
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223907
Souhrn
Objective
Overweight and obesity in preschoolers might develop into childhood and even adulthood obesity. Overweight and obesity have been shown to be negatively related with cardiorespiratory fitness (CRF) in children and adults but few studies did among preschoolers. We aimed to evaluate whether excess body adipose is negatively associated with CRF in both the submaximal and maximal effort of preschool children in exercise testing and to examine if there is difference to achieve maximal effort during exercise testing between preschoolers with normal and excess body adipose.
Methods
Data of 106 preschoolers aged 4–6 that received symptom-limited treadmill exercise testing was analyzed. Anthropometry was measured by vector bioelectrical impedance analysis. Excess body adipose was defined as (1) ‘overweight’ and ‘obesity’ by body mass index (BMI), (2) fat mass index (FMI) greater than the sex- and age-specific 75th percentile of whole subjects, and (3) fat-free mass index (FFMI) smaller than the sex- and age-specific 25th percentile. CRF was indicated by metabolic equivalent (MET) at anaerobic threshold (AT MET), peak MET, oxygen uptake efficiency slope (OUES) calculated by the 50% (OUES-50) and the entire (OUES-100) duration of the exercise testing.
Results
Preschoolers with excess body adipose by three different definitions (BMI, FMI, and FFMI) all had poorer ability to perform maximal effort (p = 0.004, 0.043, and 0.007, respectively). Preschoolers with excess body adipose by BMI and FFMI classifications had lower OUES-50 (p = 0.018, and 0.001, respectively), and lower OUES-100 (p = 0.004, and 0.001, respectively) than peers with normal body adipose during exercise testing while those with excess body adipose by FMI classification showed no significant differences from peers with normal body adipose in both OUES-50 and OUES-100.
Conclusions
Preschoolers with excess body adipose had lower CRF significantly during treadmill exercise testing. Weight control and health promotion should start as early as possible.
Klíčová slova:
Body Mass Index – Schools – Fats – Children – Obesity – Childhood obesity – Exercise – Anthropometry
Zdroje
1. Ling J, Robbins LB, Wen F. Interventions to prevent and manage overweight or obesity in preschool children: A systematic review. International journal of nursing studies. 2016;53:270–89. Epub 2015/11/20. doi: 10.1016/j.ijnurstu.2015.10.017 26582470.
2. de Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. The American journal of clinical nutrition. 2010;92(5):1257–64. Epub 2010/09/24. doi: 10.3945/ajcn.2010.29786 20861173.
3. Hsieh PL, FitzGerald M. Childhood obesity in Taiwan: review of the Taiwanese literature. Nursing & health sciences. 2005;7(2):134–42. Epub 2005/05/10. doi: 10.1111/j.1442-2018.2005.00218.x 15877690.
4. Nasreddine L, Hwalla N, Saliba A, Akl C, Naja F. Prevalence and Correlates of Preschool Overweight and Obesity Amidst the Nutrition Transition: Findings from a National Cross-Sectional Study in Lebanon. Nutrients. 2017;9(3). Epub 2017/03/14. doi: 10.3390/nu9030266 28287459; PubMed Central PMCID: PMC5372929.
5. Steinberger J, Daniels SR. Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation. 2003;107(10):1448–53. Epub 2003/03/19. doi: 10.1161/01.cir.0000060923.07573.f2 12642369.
6. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. International journal of obesity (2005). 2011;35(7):891–8. Epub 2010/10/27. doi: 10.1038/ijo.2010.222 20975725.
7. Taveras EM, Camargo CA Jr., Rifas-Shiman SL, Oken E, Gold DR, Weiss ST, et al. Association of birth weight with asthma-related outcomes at age 2 years. Pediatric pulmonology. 2006;41(7):643–8. Epub 2006/05/17. doi: 10.1002/ppul.20427 16703577; PubMed Central PMCID: PMC1488724.
8. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. The New England journal of medicine. 2010;362(6):485–93. Epub 2010/02/12. doi: 10.1056/NEJMoa0904130 20147714; PubMed Central PMCID: PMC2958822.
9. Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity (Silver Spring, Md). 2009;17(5):941–64. Epub 2009/01/24. doi: 10.1038/oby.2008.636 19165161.
10. Evensen E, Wilsgaard T, Furberg AS, Skeie G. Tracking of overweight and obesity from early childhood to adolescence in a population-based cohort—the Tromso Study, Fit Futures. BMC pediatrics. 2016;16:64. Epub 2016/05/12. doi: 10.1186/s12887-016-0599-5 27165270; PubMed Central PMCID: PMC4863357.
11. Handel MN, Larsen SC, Rohde JF, Stougaard M, Olsen NJ, Heitmann BL. Effects of the Healthy Start randomized intervention trial on physical activity among normal weight preschool children predisposed to overweight and obesity. PloS one. 2017;12(10):e0185266. Epub 2017/10/11. doi: 10.1371/journal.pone.0185266 28991907; PubMed Central PMCID: PMC5633144.
12. Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, et al. Early physical activity provides sustained bone health benefits later in childhood. Medicine and science in sports and exercise. 2010;42(6):1072–8. Epub 2009/12/10. doi: 10.1249/MSS.0b013e3181c619b2 19997029; PubMed Central PMCID: PMC2874089.
13. Mahoney JL, Vest AE. The Over-Scheduling Hypothesis Revisited: Intensity of Organized Activity Participation During Adolescence and Young Adult Outcomes. Journal of research on adolescence: the official journal of the Society for Research on Adolescence. 2012;22(3):409–18. Epub 2012/10/16. doi: 10.1111/j.1532-7795.2012.00808.x 23066336; PubMed Central PMCID: PMC3467014.
14. Marques-Vidal P, Marcelino G, Ravasco P, Oliveira JM, Paccaud F. Increased body fat is independently and negatively related with cardiorespiratory fitness levels in children and adolescents with normal weight. European journal of cardiovascular prevention and rehabilitation: official journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology. 2010;17(6):649–54. Epub 2011/01/29. doi: 10.1097/HJR.0b013e328336975e 21268775.
15. Hsieh PL, Chen ML, Huang CM, Chen WC, Li CH, Chang LC. Physical activity, body mass index, and cardiorespiratory fitness among school children in Taiwan: a cross-sectional study. International journal of environmental research and public health. 2014;11(7):7275–85. Epub 2014/07/18. doi: 10.3390/ijerph110707275 25032742; PubMed Central PMCID: PMC4113875.
16. Freedman DS, Wang J, Maynard LM, Thornton JC, Mei Z, Pierson RN, et al. Relation of BMI to fat and fat-free mass among children and adolescents. International journal of obesity (2005). 2005;29(1):1–8. Epub 2004/07/28. doi: 10.1038/sj.ijo.0802735 15278104.
17. Forsum E, Flinke Carlsson E, Henriksson H, Henriksson P, Lof M. Total body fat content versus BMI in 4-year-old healthy Swedish children. Journal of obesity. 2013;2013:206715. Epub 2013/04/23. doi: 10.1155/2013/206715 23606949; PubMed Central PMCID: PMC3628210.
18. Henriksson P, Cadenas-Sanchez C, Leppanen MH, Delisle Nystrom C, Ortega FB, Pomeroy J, et al. Associations of Fat Mass and Fat-Free Mass with Physical Fitness in 4-Year-Old Children: Results from the MINISTOP Trial. Nutrients. 2016;8(8). Epub 2016/08/03. doi: 10.3390/nu8080473 27483320; PubMed Central PMCID: PMC4997386.
19. Tuan SH, Su HT, Chen YJ, Chen CH, Tsai WJ, Chen GB, et al. Ability of preschoolers to achieve maximal exercise and its correlation with oxygen uptake efficiency slope approximately an observational study by direct cardiopulmonary exercise testing. Medicine. 2018;97(46):e13296. Epub 2018/11/16. doi: 10.1097/MD.0000000000013296 30431617; PubMed Central PMCID: PMC6257576.
20. Exercise testing and Exercise Prescription for Special Cases: Theoretical Basis and Clinical Application. third ed. Philadelphia: Lippincott Williams & Wilking; 2005 February 22, 2005. 418 p.
21. Akkerman M, van Brussel M, Bongers BC, Hulzebos EH, Helders PJ, Takken T. Oxygen uptake efficiency slope in healthy children. Pediatric exercise science. 2010;22(3):431–41. Epub 2010/09/04. 20814038
22. Hollenberg M, Tager IB. Oxygen uptake efficiency slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. Journal of the American College of Cardiology. 2000;36(1):194–201. Epub 2000/07/18. doi: 10.1016/s0735-1097(00)00691-4 10898434.
23. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods. 2007;39(2):175–91. Epub 2007/08/19. 17695343.
24. Medicine ACoS. ACSM’s resource manual for guidelines for exercise testing and prescription. Seventh ed2014. 896 p.
25. Massin MM. The role of exercise testing in pediatric cardiology. Archives of cardiovascular diseases. 2014;107(5):319–27. Epub 2014/05/21. doi: 10.1016/j.acvd.2014.04.004 24841496.
26. American College of Sports M, Riebe D, Ehrman JK, Liguori G, Magal M. ACSM's guidelines for exercise testing and prescription2018.
27. Chang RR, Gurvitz M, Rodriguez S, Hong E, Klitzner TS. Current practice of exercise stress testing among pediatric cardiology and pulmonology centers in the United States. Pediatric cardiology. 2006;27(1):110–6. Epub 2005/10/20. doi: 10.1007/s00246-005-1046-9 16235016.
28. Medicine ACoS. ACSM’s guidelines for exercise testing and prescription. 9 ed: Lippincott Williams & Wilkins; 2013.
29. Washington RL. Cardiorespiratory testing: anaerobic threshold/respiratory threshold. Pediatric cardiology. 1999;20(1):12–5; discussion 6. Epub 1998/12/23. doi: 10.1007/s002469900383 9861065.
30. Ehrman JK, American College of Sports M. ACSM's resource manual for Guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010.
31. Figueroa-Colon R, Hunter GR, Mayo MS, Aldridge RA, Goran MI, Weinsier RL. Reliability of treadmill measures and criteria to determine VO2max in prepubertal girls. Medicine and science in sports and exercise. 2000;32(4):865–9. Epub 2000/04/25. doi: 10.1097/00005768-200004000-00021 10776908.
32. Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905–20. Epub 2006/03/29. doi: 10.1161/CIRCULATIONAHA.106.174375 16567564.
33. Guida B, Pietrobelli A, Trio R, Laccetti R, Falconi C, Perrino NR, et al. Body mass index and bioelectrical vector distribution in 8-year-old children. Nutrition, metabolism, and cardiovascular diseases: NMCD. 2008;18(2):133–41. Epub 2007/02/20. doi: 10.1016/j.numecd.2006.08.008 17307345.
34. Health Promotion Administration MoHaW, Taiwan. Reference for boday mass index of children and adolescents in Taiwan 2018 [cited 2019 Jan. 08]. Available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=542&pid=9547.
35. Flegal KM, Ogden CL, Yanovski JA, Freedman DS, Shepherd JA, Graubard BI, et al. High adiposity and high body mass index-for-age in US children and adolescents overall and by race-ethnic group. The American journal of clinical nutrition. 2010;91(4):1020–6. Epub 2010/02/19. doi: 10.3945/ajcn.2009.28589 20164313; PubMed Central PMCID: PMC2844683.
36. Lamb MM, Ogden CL, Carroll MD, Lacher DA, Flegal KM. Association of body fat percentage with lipid concentrations in children and adolescents: United States, 1999–2004. The American journal of clinical nutrition. 2011;94(3):877–83. Epub 2011/07/22. doi: 10.3945/ajcn.111.015776 21775565.
37. Weber DR, Moore RH, Leonard MB, Zemel BS. Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. The American journal of clinical nutrition. 2013;98(1):49–56. Epub 2013/05/24. doi: 10.3945/ajcn.112.053611 23697708; PubMed Central PMCID: PMC3683820.
38. Marinov B, Mandadzhieva S, Kostianev S. Oxygen-uptake efficiency slope in healthy 7- to 18-year-old children. Pediatric exercise science. 2007;19(2):159–70. Epub 2007/07/03. 17603139.
39. Eiberg S, Hasselstrom H, Gronfeldt V, Froberg K, Svensson J, Andersen LB. Maximum oxygen uptake and objectively measured physical activity in Danish children 6–7 years of age: the Copenhagen school child intervention study. British journal of sports medicine. 2005;39(10):725–30. Epub 2005/09/27. doi: 10.1136/bjsm.2004.015230 16183768; PubMed Central PMCID: PMC1725036.
40. Breithaupt PG, Colley RC, Adamo KB. Using the oxygen uptake efficiency slope as an indicator of cardiorespiratory fitness in the obese pediatric population. Pediatric exercise science. 2012;24(3):357–68. Epub 2012/09/14. 22971553.
41. Bongers BC, Hulzebos EH, Helbing WA, Ten Harkel A, van Brussel M, Takken T. Response profiles of oxygen uptake efficiency during exercise in healthy children. European journal of preventive cardiology. 2016;23(8):865–73. Epub 2015/10/16. doi: 10.1177/2047487315611769 26464293.
42. Martinez-Tellez B, Sanchez-Delgado G, Cadenas-Sanchez C, Mora-Gonzalez J, Martin-Matillas M, Lof M, et al. Health-related physical fitness is associated with total and central body fat in preschool children aged 3 to 5 years. Pediatric obesity. 2016;11(6):468–74. Epub 2015/12/20. doi: 10.1111/ijpo.12088 26683697.
43. Hansen D, Marinus N, Remans M, Courtois I, Cools F, Calsius J, et al. Exercise tolerance in obese vs. lean adolescents: a systematic review and meta-analysis. Obesity reviews: an official journal of the International Association for the Study of Obesity. 2014;15(11):894–904. Epub 2014/08/19. doi: 10.1111/obr.12202 25132188.
44. Tuan S, Su H, Chen Y, Li M, Tsai Y, Yang C, et al. Fat Mass Index and Body Mass Index Affect Peak Metabolic Equivalent Negatively during Exercise Test among Children and Adolescents in Taiwan. International journal of environmental research and public health. 2018;15(2). Epub 2018/02/07. doi: 10.3390/ijerph15020263 29401698; PubMed Central PMCID: PMC5858332.
45. Melendez-Ortega A, Lucy Davis C, Barbeau P, Boyle CA. Oxygen uptake of overweight and obese children at different stages of a progressive treadmill test: Consumo de oxigeno de ninos y ninas con sobrepeso y obesos en los diferentes estadios de una prueba progresiva en un tapiz rodante. Revista internacional de ciencias del deporte. 2010;6(18):74–90. Epub 2011/01/11. doi: 10.5232/ricyde2010.01805 21218170; PubMed Central PMCID: PMC3015151.
46. Bhammar DM, Stickford JL, Bernhardt V, Babb TG. Verification of Maximal Oxygen Uptake in Obese and Nonobese Children. Medicine and science in sports and exercise. 2017;49(4):702–10. Epub 2016/11/23. doi: 10.1249/MSS.0000000000001170 27875494; PubMed Central PMCID: PMC5357186.
47. Hull HR, Thornton J, Wang J, Pierson RN Jr., Kaleem Z, Pi-Sunyer X, et al. Fat-free mass index: changes and race/ethnic differences in adulthood. International journal of obesity (2005). 2011;35(1):121–7. Epub 2010/06/10. doi: 10.1038/ijo.2010.111 20531353; PubMed Central PMCID: PMC3306818.
48. Schutz Y, Kyle UU, Pichard C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity. 2002;26(7):953–60. Epub 2002/06/25. doi: 10.1038/sj.ijo.0802037 12080449.
49. Nakao T, Komiya S. Reference norms for a fat-free mass index and fat mass index in the Japanese child population. Journal of physiological anthropology and applied human science. 2003;22(6):293–8. Epub 2003/12/04. 14646264.
50. Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. International journal of obesity (2005). 2008;32(1):1–11. Epub 2007/11/29. doi: 10.1038/sj.ijo.0803774 18043605.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis