Sealing agent reduces formation of single and dual-species biofilms of Candida albicans and Enterococcus faecalis on screw joints at the abutment/implant interface
Autoři:
Cecília Alves de Sousa aff001; Jadison Junio Conforte aff001; Karina Sampaio Caiaffa aff002; Cristiane Duque aff002; Wirley Gonçalves Assunção aff002
Působiště autorů:
Department of Dental Materials and Prosthodontic, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
aff001; Department of Pediatric Dentistry and Public Health, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223148
Souhrn
The aim of this research was to evaluate the efficacy of a commercial sealing agent at the abutment/implant interface against microleakage of single and dual-species biofilms of Candida albicans and Enterococcus faecalis into external hexagon (EH) and Morse taper (MT) prosthetic connections. A total of 216 samples of implants and their abutments were tested. Six groups (n = 36) were evaluated based on biofilm and period of incubation (7 and 14 days). The implant connections EH and MT (n = 18) were divided according to the use of the material (n = 9) (EH-T and MT-T: with the sealing agent; EH-C and MT-C: control). The biofilms were analyzed by microbial counting (CFU/mL) and SEM analysis and photographs of the material in the screw joints were also taken. Data were analyzed by Student t test, two-way ANOVA and Bonferroni test. For the single-species biofilms, there was a significant reduction in the growth of E. faecalis when compared MT-C and MT-T or EH-C and EH-T at 7 and 14 days. The same was observed for C. albicans biofilms. For dual-species biofilms of E. faecalis and C. albicans, the sealing agent was more effective in preventing microbial infiltration into the MT connection at 14 days, while microbial infiltration did not occur into EH connections even in absence of the sealing agent for both periods of evaluation. Overall, these data suggest that the presence of the sealing agent reduces or eliminates the microleakage of E. faecalis and C. albicans biofilms into the implants regardless of the period of incubation.
Klíčová slova:
Bacterial biofilms – Biofilms – Medical implants – Prosthetics – Candida albicans – Enterococcus faecalis – Scanning electron microscopy – Bacterial growth
Zdroje
1. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. Journal of clinical periodontology. 2002;29 Suppl 3:197–212; discussion 32–3. Epub 2003/06/06. doi: 10.1034/j.1600-051x.29.s3.12.x 12787220.
2. Swierkot K, Lottholz P, Flores-de-Jacoby L, Mengel R. Mucositis, peri-implantitis, implant success, and survival of implants in patients with treated generalized aggressive periodontitis: 3- to 16-year results of a prospective long-term cohort study. Journal of periodontology. 2012;83(10):1213–25. Epub 2012/01/24. doi: 10.1902/jop.2012.110603 22264211.
3. Schou S. Implant treatment in periodontitis-susceptible patients: a systematic review. Journal of oral rehabilitation. 2008;35 Suppl 1:9–22. Epub 2008/01/10. doi: 10.1111/j.1365-2842.2007.01830.x 18181930.
4. Akcali A, Trullenque-Eriksson A, Sun C, Petrie A, Nibali L, Donos N. What is the effect of soft tissue thickness on crestal bone loss around dental implants? A systematic review. Clinical oral implants research. 2017;28(9):1046–53. Epub 2016/07/20. doi: 10.1111/clr.12916 27432592.
5. Costa FO, Ferreira SD, Cortelli JR, Lima RPE, Cortelli SC, Cota LOM. Microbiological profile associated with peri-implant diseases in individuals with and without preventive maintenance therapy: a 5-year follow-up. Clinical oral investigations. 2018. Epub 2018/11/06. doi: 10.1007/s00784-018-2737-y 30386996.
6. Cortelli JR, Aquino DR, Cortelli SC, Nobre Franco GC, Fernandes CB, Roman-Torres CV, et al. Detection of periodontal pathogens in oral mucous membranes of edentulous individuals. Journal of periodontology. 2008;79(10):1962–5. Epub 2008/10/07. doi: 10.1902/jop.2008.080092 18834252.
7. Fernandes CB, Aquino DR, Franco GC, Cortelli SC, Costa FO, Cortelli JR. Do elderly edentulous patients with a history of periodontitis harbor periodontal pathogens? Clinical oral implants research. 2010;21(6):618–23. Epub 2010/03/27. doi: 10.1111/j.1600-0501.2009.01892.x 20337663.
8. Canullo L, Penarrocha-Oltra D, Covani U, Rossetti PH. Microbiologic and Clinical Findings of Implants in Healthy Condition and with Peri-Implantitis. The International journal of oral & maxillofacial implants. 2015;30(4):834–42. Epub 2015/08/08. doi: 10.11607/jomi.3947 26252036.
9. Flanagan D. Enterococcus faecalis and Dental Implants. The Journal of oral implantology. 2017;43(1):8–11. Epub 2016/10/05. doi: 10.1563/aaid-joi-D-16-00069 27700696.
10. Percival SL, McCarty SM, Lipsky B. Biofilms and Wounds: An Overview of the Evidence. Advances in wound care. 2015;4(7):373–81. Epub 2015/07/15. doi: 10.1089/wound.2014.0557 26155379; PubMed Central PMCID: PMC4486148.
11. Calcaterra R, Di Girolamo M, Mirisola C, Baggi L. Effects of Repeated Screw Tightening on Implant Abutment Interfaces in Terms of Bacterial and Yeast Leakage in Vitro: One-Time Abutment Versus the Multiscrewing Technique. The International journal of periodontics & restorative dentistry. 2016;36(2):275–80. Epub 2016/02/24. doi: 10.11607/prd.2082 26901305.
12. Koutouzis T, Wallet S, Calderon N, Lundgren T. Bacterial colonization of the implant-abutment interface using an in vitro dynamic loading model. Journal of periodontology. 2011;82(4):613–8. Epub 2010/11/04. doi: 10.1902/jop.2010.100415 21043798.
13. Listgarten MA. Microorganisms and dental implants. Journal of periodontology. 1999;70(2):220–2. Epub 1999/04/02. doi: 10.1902/jop.1999.70.2.220 10102562.
14. Koutouzis T, Mesia R, Calderon N, Wong F, Wallet S. The effect of dynamic loading on bacterial colonization of the dental implant fixture-abutment interface: an in vitro study. The Journal of oral implantology. 2014;40(4):432–7. Epub 2014/08/12. doi: 10.1563/AAID-JOI-D-11-00207 25106007.
15. Koutouzis T, Gadalla H, Lundgren T. Bacterial Colonization of the Implant-Abutment Interface (IAI) of Dental Implants with a Sloped Marginal Design: An in-vitro Study. Clinical implant dentistry and related research. 2016;18(1):161–7. Epub 2015/01/28. doi: 10.1111/cid.12287 25623033.
16. Cavalcanti AG, Fonseca FT, Zago CD, Brito Junior RB, Franca FM. Efficacy of Gutta-Percha and Polytetrafluoroethylene Tape to Microbiologically Seal the Screw Access Channel of Different Prosthetic Implant Abutments. Clinical implant dentistry and related research. 2016;18(4):778–87. Epub 2015/04/16. doi: 10.1111/cid.12344 25873366.
17. Nayak AG, Fernandes A, Kulkarni R, Ajantha GS, Lekha K, Nadiger R. Efficacy of antibacterial sealing gel and O-ring to prevent microleakage at the implant abutment interface: an in vitro study. The Journal of oral implantology. 2014;40(1):11–4. Epub 2011/05/18. doi: 10.1563/AAID-JOI-D-10-00167 21574837.
18. do Nascimento C, Pita MS, Calefi PL, de Oliveira Silva TS, Dos Santos JB, Pedrazzi V. Different sealing materials preventing the microbial leakage into the screw-retained implant restorations: an in vitro analysis by DNA checkerboard hybridization. Clinical oral implants research. 2017;28(2):242–50. Epub 2016/01/30. doi: 10.1111/clr.12790 26822400.
19. Seloto CB, Strazzi Sahyon HB, Dos Santos PH, Delben JA, Assuncao WG. Efficacy of Sealing Agents on Preload Maintenance of Screw-Retained Implant-Supported Prostheses. The International journal of oral & maxillofacial implants. 2018;33(1):123–6. Epub 2017/09/25. doi: 10.11607/jomi.5576 28938032.
20. Smith NA, Turkyilmaz I. Evaluation of the sealing capability of implants to titanium and zirconia abutments against Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum under different screw torque values. The Journal of prosthetic dentistry. 2014;112(3):561–7. Epub 2014/03/25. doi: 10.1016/j.prosdent.2013.11.010 24656409.
21. Sanchez MC, Llama-Palacios A, Fernandez E, Figuero E, Marin MJ, Leon R, et al. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dental materials: official publication of the Academy of Dental Materials. 2014;30(10):1161–71. Epub 2014/08/12. doi: 10.1016/j.dental.2014.07.008 25110288.
22. do Nascimento C, Barbosa RE, Issa JP, Watanabe E, Ito IY, Albuquerque RF, Jr. Bacterial leakage along the implant-abutment interface of premachined or cast components. International journal of oral and maxillofacial surgery. 2008;37(2):177–80. Epub 2007/10/13. doi: 10.1016/j.ijom.2007.07.026 17931833.
23. Guiotti AM, Cunha BG, Paulini MB, Goiato MC, Dos Santos DM, Duque C, et al. Antimicrobial activity of conventional and plant-extract disinfectant solutions on microbial biofilms on a maxillofacial polymer surface. The Journal of prosthetic dentistry. 2016;116(1):136–43. Epub 2016/02/29. doi: 10.1016/j.prosdent.2015.12.014 26922209.
24. Harriott MM, Noverr MC. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrobial agents and chemotherapy. 2010;54(9):3746–55. Epub 2010/06/23. doi: 10.1128/AAC.00573-10 20566760; PubMed Central PMCID: PMC2934986.
25. Zago CE, Silva S, Sanita PV, Barbugli PA, Dias CM, Lordello VB, et al. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA). PloS one. 2015;10(4):e0123206. Epub 2015/04/16. doi: 10.1371/journal.pone.0123206 25875834; PubMed Central PMCID: PMC4395328.
26. do Nascimento C, Miani PK, Pedrazzi V, Muller K, de Albuquerque RF, Jr. Bacterial leakage along the implant-abutment interface: culture and DNA Checkerboard hybridization analyses. Clinical oral implants research. 2012;23(10):1168–72. Epub 2011/11/19. doi: 10.1111/j.1600-0501.2011.02280.x 22092990.
27. Steinebrunner L, Wolfart S, Bossmann K, Kern M. In vitro evaluation of bacterial leakage along the implant-abutment interface of different implant systems. The International journal of oral & maxillofacial implants. 2005;20(6):875–81. Epub 2006/01/06. PubMed 16392344.
28. Aloise JP, Curcio R, Laporta MZ, Rossi L, da Silva AM, Rapoport A. Microbial leakage through the implant-abutment interface of Morse taper implants in vitro. Clinical oral implants research. 2010;21(3):328–35. Epub 2010/01/16. doi: 10.1111/j.1600-0501.2009.01837.x 20074246.
29. Canullo L, Penarrocha-Oltra D, Soldini C, Mazzocco F, Penarrocha M, Covani U. Microbiological assessment of the implant-abutment interface in different connections: cross-sectional study after 5 years of functional loading. Clinical oral implants research. 2015;26(4):426–34. Epub 2014/03/29. doi: 10.1111/clr.12383 24665919.
30. do Nascimento C, Miani PK, Pedrazzi V, Goncalves RB, Ribeiro RF, Faria AC, et al. Leakage of saliva through the implant-abutment interface: in vitro evaluation of three different implant connections under unloaded and loaded conditions. The International journal of oral & maxillofacial implants. 2012;27(3):551–60. Epub 2012/05/23. PubMed 22616048.
31. Gross M, Abramovich I, Weiss EI. Microleakage at the abutment-implant interface of osseointegrated implants: a comparative study. The International journal of oral & maxillofacial implants. 1999;14(1):94–100. Epub 1999/03/13. PubMed 10074758.
32. Ricomini Filho AP, Fernandes FS, Straioto FG, da Silva WJ, Del Bel Cury AA. Preload loss and bacterial penetration on different implant-abutment connection systems. Brazilian dental journal. 2010;21(2):123–9. Epub 2010/07/20. PubMed 20640358.
33. Silva-Neto JP, Prudente MS, Carneiro Tde A, Nobilo MA, Penatti MP, Neves FD. Micro-leakage at the implant-abutment interface with different tightening torques in vitro. Journal of applied oral science: revista FOB. 2012;20(5):581–7. Epub 2012/11/10. doi: 10.1590/S1678-77572012000500015 23138747; PubMed Central PMCID: PMC3881787.
34. Prado AM, Pereira J, Silva FS, Henriques B, Nascimento RM, Benfatti CAM, et al. Wear of Morse taper and external hexagon implant joints after abutment removal. Journal of materials science Materials in medicine. 2017;28(5):65. Epub 2017/03/23. doi: 10.1007/s10856-017-5879-6 28321800.
35. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clinical oral implants research. 2009;20 Suppl 4:185–206. Epub 2009/08/12. doi: 10.1111/j.1600-0501.2009.01777.x 19663965.
36. Bondan JL, Oshima HM, Segundo RM, Shinkai RS, Mota EG, Meyer KR. Marginal fit analysis of premachined and castable UCLA abutments. Acta odontologica latinoamericana: AOL. 2009;22(2):139–42. Epub 2009/10/21. PubMed 19839491.
37. Byrne D, Houston F, Cleary R, Claffey N. The fit of cast and premachined implant abutments. The Journal of prosthetic dentistry. 1998;80(2):184–92. Epub 1998/08/26. doi: 10.1016/s0022-3913(98)70108-8 9710820.
38. Kano SC, Binon P, Bonfante G, Curtis DA. Effect of casting procedures on screw loosening in UCLA-type abutments. Journal of prosthodontics: official journal of the American College of Prosthodontists. 2006;15(2):77–81. Epub 2006/05/03. doi: 10.1111/j.1532-849X.2006.00078.x 16650006.
39. Silva S, Pires P, Monteiro DR, Negri M, Gorup LF, Camargo ER, et al. The effect of silver nanoparticles and nystatin on mixed biofilms of Candida glabrata and Candida albicans on acrylic. Medical mycology. 2013;51(2):178–84. Epub 2012/07/19. doi: 10.3109/13693786.2012.700492 22803822.
40. Andreotti AM, De Sousa CA, Goiato MC, Freitas da Silva EV, Duque C, Moreno A, et al. In vitro evaluation of microbial adhesion on the different surface roughness of acrylic resin specific for ocular prosthesis. European journal of dentistry. 2018;12(2):176–83. Epub 2018/07/11. doi: 10.4103/ejd.ejd_50_18 29988209; PubMed Central PMCID: PMC6004800.
41. Fidel PL Jr., Vazquez JA, Sobel JD. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clinical microbiology reviews. 1999;12(1):80–96. Epub 1999/01/09. PubMed 9880475; PubMed Central PMCID: PMC88907.
42. Crespi R, Cappare P, Gastaldi G, Gherlone EF. Immediate occlusal loading of full-arch rehabilitations: screw-retained versus cement-retained prosthesis. An 8-year clinical evaluation. The International journal of oral & maxillofacial implants. 2014;29(6):1406–11. Epub 2014/11/15. doi: 10.11607/jomi.3746 25397803.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis