Isotopic compositions of ground ice in near-surface permafrost in relation to vegetation and microtopography at the Taiga–Tundra boundary in the Indigirka River lowlands, northeastern Siberia
Autoři:
Shinya Takano aff001; Atsuko Sugimoto aff002; Shunsuke Tei aff002; Maochang Liang aff001; Ryo Shingubara aff001; Tomoki Morozumi aff001; Trofim C. Maximov aff005
Působiště autorů:
Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
aff001; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
aff002; Arctic Research Center, Hokkaido University, Sapporo, Japan
aff003; Global Station for Arctic Research, Hokkaido University, Sapporo, Japan
aff004; North-Eastern Federal University in Yakutsk, Yakutsk, Sakha, Russia
aff005; Institute for Biological Problems of Cryolithozone, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Sakha, Russia
aff006
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223720
Souhrn
The warming trend in the Arctic region is expected to cause drastic changes including permafrost degradation and vegetation shifts. We investigated the spatial distribution of ice content and stable isotopic compositions of water in near-surface permafrost down to a depth of 1 m in the Indigirka River lowlands of northeastern Siberia to examine how the permafrost conditions control vegetation and microtopography in the Taiga–Tundra boundary ecosystem. The gravimetric water content (GWC) in the frozen soil layer was significantly higher at microtopographically high elevations with growing larch trees (i.e., tree mounds) than at low elevations with wetland vegetation (i.e., wet areas). The observed ground ice (ice-rich layer) with a high GWC in the tree mounds suggests that the relatively elevated microtopography of the land surface, which was formed by frost heave, strongly affects the survival of larch trees. The isotopic composition of the ground ice indicated that equilibrium isotopic fractionation occurred during ice segregation at the tree mounds, which implies that the ice formed with sufficient time for the migration of unfrozen soil water to the freezing front. In contrast, the isotopic data for the wet areas indicated that rapid freezing occurred under relatively non-equilibrium conditions, implying that there was insufficient time for ice segregation to occur. The freezing rate of the tree mounds was slower than that of the wet areas due to the difference of such as soil moisture and snow cover depends on vegetation and microtopography. These results indicate that future changes in snow cover, soil moisture, and organic layer, which control underground thermal conductivity, will have significant impacts on the freezing environment of the ground ice at the Taiga–Tundra boundary in northeastern Siberia. Such changes in the freezing environment will then affect vegetation due to changes in the microtopography of the ground surface.
Klíčová slova:
Trees – Surface water – Thermal conductivity – Fractionation – Ice cores – Snow – Delta ecosystems – Isotopes
Zdroje
1. Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. Permafrost. 2003; 1289–1294.
2. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo LD, Hayes DJ, et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr. 2009; 79(4): 523–555. https://doi.org/10.1890/08-2025.1
3. Serreze MC, Barry RG. Processes and impacts of Arctic amplification: A research synthesis. Glob Planet Change. 2011; 77(1–2): 85–96. https://doi.org/10.1016/j.gloplacha.2011.03.004
4. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, et al. Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al. (eds.), Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007; 337–383.
5. Tei S, Sugimoto A, Yonenobu H, Matsuura Y, Osawa A, Sato H, et al. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Glob Chang Biol. 2017; 23(12): 5179–5188. doi: 10.1111/gcb.13780 28585765
6. Tei S, Sugimoto A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob Chang Biol. 2018; 24(9): 4225–4237. doi: 10.1111/gcb.14135 29569800
7. Tchebakova NM, Parfenova E, Soja AJ. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett. 2009; 4(4). http://dx.doi.org/10.1088/1748-9326/4/4/045013
8. Frost GV, Epstein HE. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob Change Biol. 2014; 20(4): 1264–1277. https://doi.org/10.1111/gcb.12406
9. Ranson KJ, Montesano PM, Nelson R. Object-based mapping of the circumpolar taiga-tundra ecotone with MODIS tree cover. Remote Sens Environ. 2011; 115(12): 3670–3680. https://doi.org/10.1016/j.rse.2011.09.006
10. Kravtsova VI, Loshkareva AR. Dynamics of vegetation in the tundra-taiga ecotone on the Kola Peninsula depending on climate fluctuations. Russ J Ecol. 2013; 44(4): 303–311. https://doi.org/10.1134/S1067413613040085
11. Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change. 2001; 48(4): 551–579. https://doi.org/10.1023/A:1005667424292
12. Boch MS. Bolota tundrovoi zony Sibiri (printsipy tipologii). In Tipy bolot SSSR i printsipy ikh klassifikatsii, Abramova TG (ed.). Akademiya Nauk SSSR: Leningrad. 1974; 146–154.
13. Minke M, Donner N, Karpov NS, de Klerk P, Joosten H. Distribution, diversity, development and dynamics of polygon mires: examples from NE Yakutia (NE Siberia). Peatlands Int. 2007; 1: 36–40.
14. Chernov Y, Matveyeva N. Arctic ecosystems in Russia. In: Wielgolaski F (ed.). Ecosystems of the World. Amsterdam: Elsevier. 1997; 361–507.
15. Minke M, Donner N, Karpov N, de Klerk P, Joosten H. Patterns in Vegetation Composition, Surface Height and Thaw Depth in Polygon Mires in the Yakutian Arctic (NE Siberia): A Microtopographical Characterisation of the Active Layer. Permafr Periglac Process. 2009; 20(4): 357–368. https://doi.org/10.1002/ppp.663
16. Wolter J, Lantuit H, Fritz M, Macias-Fauria M, Myers-Smith I, Herzschuh U. Vegetation composition and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation. Polar Res. 2016; 35. doi: 10.3402/polar.v35.27105
17. Zibulski R, Herzschuh U, Pestryakova LA. Vegetation patterns along micro-relief and vegetation type transects in polygonal landscapes of the Siberian Arctic. J Veg Sci. 2016; 27(2): 377–386. https://doi.org/10.1111/jvs.12356
18. Boudreau LD, Rouse WR. THE ROLE OF INDIVIDUAL TERRAIN UNITS IN THE WATER-BALANCE OF WETLAND TUNDRA. Clim Res. 1995; 5(1): 31–47. https://doi.org/10.3354/cr005031
19. Engstrom R, Hope A, Kwon H, Stow D, Zamolodchikov D. Spatial distribution of near surface soil moisture and its relationship to microtopography in the Alaskan Arctic coastal plain. Nordic Hydrology. 2005; 36(3): 219–234. https://doi.org/10.2166/nh.2005.0016
20. Godin E, Fortier D, Levesque E. Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland. Biogeosciences. 2016; 13(5): 1439–1452. https://doi.org/10.5194/bg-13-1439-2016
21. Kokelj SV, Burn CR. Near-surface ground ice in sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafr Periglac Process. 2005; 16: 291–303. https://doi.org/10.1002/ppp.537
22. Kokelj SV, Burn CR. Ground ice and soluable cations in near-surface permafrost, Inuvik, Northwest Territories, Canada. Permafr Periglac Process. 2003; 14: 275–289. https://doi.org/10.1002/ppp.458
23. Kokelj SV, Burn CR, Tarnocai C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct Antarct Alp Res. 2007; 39: 99–109. https://doi.org/10.1657/1523-0430(2007)39[99:TSADOE]2.0.CO;2
24. Burn CR, Kokelj SV. The environment and permafrost of the Mackenzie Delta area, Permafr Periglac Process. 2009; 20: 83–105. https://doi.org/10.1002/ppp.655
25. Morse PD, Burn CR. Field observations of syngenetic ice wedge polygons, outer Mackenzie Delta, western Arctic coast, Canada. J Geophys Res Earth Surf. 2013; 118: 1320–1332. https://doi.org/10.1002/jgrf.20086
26. Van Everdingen R (ed.). Multi-language Glossary of Permafrost and Related Ground-ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder. 1998 (Rev. May 2005).
27. Shur Y, Hinkel KM, Nelson FE. The transient layer: Implications for geocryology and climate-change science. Permafr Periglac Process. 2005; 16(1): 5–17. https://doi.org/10.1002/ppp.518
28. French H, Shur Y. The principles of cryostratigraphy. Earth-Sci Rev. 2010; 101(3–4): 190–206. https://doi.org/10.1016/j.earscirev.2010.04.002
29. Matsumoto J, Ohkubo T. Experimental study on heat transfer characteristics of soils. Proceedings of the Japan society of civil engineers. 1977; 257: 43–50. https://doi.org/10.2208/jscej1969.1977.53
30. Hinzman LD, Kane DL, Gieck RE, Everett KR. HYDROLOGIC AND THERMAL-PROPERTIES OF THE ACTIVE LAYER IN THE ALASKAN ARCTIC. Cold Reg Sci Technol. 1991; 19(2): 95–110. https://doi.org/10.1016/0165-232X(91)90001-W
31. Zhang TJ. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev Geophys. 2005; 43(4). https://doi.org/10.1029/2004RG000157
32. Stuiver M, Yang IC, Denton GH. PERMAFROST OXYGEN ISOTOPE RATIOS AND CHRONOLOGY OF 3 CORES FROM ANTARCTICA. Nature. 1976; 261(5561): 547–550. https://doi.org/10.1038/261547a0
33. Mackay JR. Oxygen isotope variations in permafrost, Tuktoyaktuk Peninsula area, Northwest Territories. Curr Res Part B, Geol Surv Can. 1983; Paper 83–1B; 67–74.
34. Craig H. ISOTOPIC VARIATIONS IN METEORIC WATERS. Science. 1961; 133(346): 1702–1703. https://doi.org/10.1126/science.133.3465.1702
35. Dansgaard W. STABLE ISOTOPES IN PRECIPITATION. Tellus. 1964; 16(4): 436–468. https://doi.org/10.3402/tellusa.v16i4.8993
36. Craig H, Gordon LI. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed.). Stable Isotopes in Oceanographic Studies and Paleotemperatures. Lab. di Geol. Necl., Pisa, Italy. 1965; 9–130.
37. Merlivat L, Jouzel J. GLOBAL CLIMATIC INTERPRETATION OF THE DEUTERIUM-OXYGEN-18 RELATIONSHIP FOR PRECIPITATION. J Geophys Res Oceans. 1979; 84(NC8): 5029–5033. https://doi.org/10.1029/JC084iC08p05029
38. Suzuoki T, Kjmura T. D/H and 18O/16O fractionation in ice-water system. J Mass Spectrom Soc Jpn. 1973; 21: 229–233. https://doi.org/10.5702/massspec1953.21.229
39. Lacelle D. On the delta O-18, delta D and D-excess Relations in Meteoric Precipitation and During Equilibrium Freezing: Theoretical Approach and Field Examples. Permafr Periglac Process. 2011; 22(1): 13–25. https://doi.org/10.1002/ppp.712
40. O’Neil JR. HYDROGEN AND OXYGEN ISOTOPE FRACTIONATION BETWEEN ICE AND WATER. J Phys Chem. 1968; 72(10): 3683–3684. https://doi.org/10.1021/j100856a060
41. Michel FA. Isotope Characterisation of Ground Ice in Northern Canada. Permafr Periglac Process. 2011; 22(1): 3–12. https://doi.org/10.1002/ppp.721
42. Meyer H, Dereviagin A, Siegert C, Hubberten HW. Palaeoclimate studies on Bykovsky Peninsula, North Siberia—hydrogen and oxygen isotopes in ground ice. Polarforschung. 2002a; 70: 37–51.
43. Meyer H, Dereviagin A, Siegert C, Schirrmeister L, Hubberten HW. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia—Hydrogen and oxygen isotopes in ice wedges. Permafr Periglac Process. 2002b; 13(2): 91–105. https://doi.org/10.1002/ppp.416
44. Meyer H, Opel T, Laepple T, Dereviagin AY, Hoffmann K, Werner M. Long-term winter warming trend in the Siberian Arctic during the mid-to late Holocene. Nat Geosci. 2015; 8(2): 122–125. https://doi.org/10.1038/ngeo2349
45. Opel T, Dereviagin AY, Meyer H, Schirrmeister L, Wetterich S. Palaeoclimatic Information from Stable Water Isotopes of Holocene Ice Wedges on the Dmitrii Laptev Strait, Northeast Siberia, Russia. Permafr Periglac Process. 2011; 22(1): 84–100. https://doi.org/10.1002/ppp.667
46. Opel T, Laepple T, Meyer H, Dereviagin AY, Wetterich S. Northeast Siberian ice wedges confirm Arctic winter warming over the past two millennia. Holocene. 2017; 27(11): 1789–1796. https://doi.org/10.1177/0959683617702229
47. Wetterich S, Rudaya N, Tumskoy V, Andreev AA, Opel T, Schirrmeister L, et al. Last Glacial Maximum records in permafrost of the East Siberian Arctic. Quat Sci Rev. 2011; 30(21–22): 3139–3151. https://doi.org/10.1016/j.quascirev.2011.07.020
48. Wetterich S, Tumskoy V, Rudaya N, Andreev AA, Opel T, Meyer H, et al. Ice Complex formation in arctic East Siberia during the MIS3 Interstadial. Quat Sci Rev. 2014; 84: 39–55. https://doi.org/10.1016/j.quascirev.2013.11.009
49. Wetterich S, Tumskoy V, Rudaya N, Kuznetsov V, Maksimov F, Opel T, et al. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic). Quat Sci Rev. 2016; 147: 298–311. https://doi.org/10.1016/j.quascirev.2015.11.016
50. Iwahana G, Takano S, Petrov RE, Tei S, Shingubara R, Maximov TC, et al. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 2014; 8(2): 96–113. https://doi.org/10.1016/j.polar.2014.01.005
51. Vasil'chuk Y, Vasil'chuk A. Spatial distribution of mean winter air temperatures in Siberian permafrost at 20-18ka BP using oxygen isotope data. Boreas. 2014; 43(3): 678–687. https://doi.org/10.1111/bor.12033
52. Streletskaya ID, Vasiliev AA, Oblogov GE, Tokarev IV. Reconstruction of paleoclimate of Russian arctic in Late Pleistocene-Holocene on the basis of isotope study of ice wedges. Earth’s Cryosphere. 2015; 19(2): 98–106.
53. Meyer H, Schirrmeister L, Yoshikawa K, Opel T, Wetterich S, Hubberten HW, et al. Permafrost evidence for severe winter cooling during the Younger Dryas in northern Alaska. Geophys Res Lett. 2010; 37. https://doi.org/10.1029/2009GL041013
54. Fritz M, Wetterich S, Schirrmeister L, Meyer H, Lantuit H, Preusser F, et al. Eastern Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada. Palaeogeogr Palaeoclimatol Palaeoecol. 2012; 319: 28–45. https://doi.org/10.1016/j.palaeo.2011.12.015
55. Yoshikawa K, Lawson D, Sharkhuu N. Stable isotope composition of ice core in open- and closed-system pingos. K.M. Hinkel (Ed.), Permafrost, Tenth International Conference, Proceedings, Salekhard, vol. 1, The Northern Publisher, Russia. 2012; 473–478.
56. Yoshikawa K, Natsagdorj S, Sharkhuu A. Groundwater Hydrology and Stable Isotope Analysis of an Open-System Pingo in Northwestern Mongolia. Permafr Periglac Process. 2013; 24(3): 175–183. https://doi.org/10.1002/ppp.1773
57. Lachniet MS, Lawson DE, Sloat AR. Revised C-14 dating of ice wedge growth in interior Alaska (USA) to MIS 2 reveals cold paleoclimate and carbon recycling in ancient permafrost terrain. Quat Res. 2012; 78(2): 217–225. https://doi.org/10.1016/j.yqres.2012.05.007
58. Porter TJ, Froese DG, Feakins SJ, Bindeman IN, Mahony ME, Pautler BG, et al. Multiple water isotope proxy reconstruction of extremely low last glacial temperatures in Eastern Beringia (Western Arctic). Quat Sci Rev. 2016; 137: 113–125. https://doi.org/10.1016/j.quascirev.2016.02.006
59. Schirrmeister L, Meyer H, Andreev A, Wetterich S, Kienast F, Bobrov A, et al. Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska). Quat Sci Rev. 2016; 147: 259–278. https://doi.org/10.1016/j.quascirev.2016.02.009
60. Yabuki H, Park H, Kawamoto H, Suzuki R, Razuvaev VN, Bulygina ON, Ohata T. Baseline Meteorological Data in Siberia (BMDS) Version 5.0. RIGC, JAMSTEC, Yokosuka, Japan, distributed by CrDAP, Digital Media. 2011.
61. Vaganov E, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature. 1999; 400: 149–151. https://doi.org/10.1038/22087
62. Tei S, Sugimoto A, Liang M, Yonenobu H, Matsuura Y, Oosawa A, et al. Radial growth and physiological response of coniferous trees to Arctic amplification. J. Geophys. Res. 2017; 122: 2786–2803. https://doi.org/10.1002/2016JG003745
63. Khitun OV, Koroleva TM, Chinenko SV, Petrovsky VV, Pospelova EB, Pospelov IN, et al. Applications of local floras for floristic subdivision and monitoring vascular plant diversity in the Russian Arctic. Arct Sci. 2016; 2: 103–126. https://doi.org/10.1139/as-2015-0010
64. Liang MC, Sugimoto A, Tei S, Bragin IV, Takano S, Morozumi T, et al. Importance of soil moisture and N availability to larch growth and distribution in the Arctic taiga-tundra boundary ecosystem, northeastern Siberia. Polar Sci. 2014; 8(4): 327–341. https://doi.org/10.1016/j.polar.2014.07.008
65. Shingubara R, Sugimoto A, Murase J, Iwahana G, Tei S, Liang MC, et al. Multi-year effect of wetting on CH4 flux at taiga-tundra boundary in northeastern Siberia deduced from stable isotope ratios of CH4. Biogeosciences. 2019; 16(3): 755–768. https://doi.org/10.5194/bg-16-755-2019
66. Morozumi T, Shingubara R, Suzuki R, Kobayashi H, Tei S, Takano S, et al. Estimating methane emissions using 1 vegetation mapping in the taiga-tundra boundary of a north-eastern Siberian lowland. Tellus B Chem Phys Meteorol. 2019; 71(1): 1–17. https://doi.org/10.1080/16000889.2019.1581004
67. Fan R, Morozumi T, Maximov TC, Sugimoto A. Effect of floods on the delta C-13 values in plant leaves: a study of willows in Northeastern Siberia. PeerJ. 2018; 6. https://doi.org/10.7717/peerj.5374
68. Kendall C, McDonnell JJ (eds.). Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier. 1998.
69. Sidorchuk AY, Panin AV, Borisova OK, Elias SA, Syvistki JP. Channel morphology and river flow in the northern Russian Plain in the Late Glacial and Holocene. Int J Earth Sci. 2000; 89: 541–549. https://doi.org/10.1007/s005310000132
70. Blok D, Heijmans M, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol. 2010; 16(4): 1296–1305. https://doi.org/10.1111/j.1365-2486.2009.02110.x|
71. Cheng G. The mechanism of repeated-segregation for the formation of thick-layered ground ice. Cold Reg Sci and Technol. 1983; 8: 57–66. https://doi.org/10.1016/0165-232X(83)90017-4
72. Souchez RA, Jouzel J. ON THE ISOTOPIC COMPOSITION IN DELTA-D AND DELTA-O-18 OF WATER AND ICE DURING FREEZING. J Glaciol. 1984; 30(106): 369–372. https://doi.org/10.3189/S0022143000006249
73. Fritz M, Wetterich S, Meyer H, Schirrmeister L, Lantuit H, Pollard WH. Origin and Characteristics of Massive Ground Ice on Herschel Island (Western Canadian Arctic) as revealed by Stable Water Isotope and Hydrochemical Signatures. Permafr Periglac Process. 2011; 22(1): 26–38. https://doi.org/10.1002/ppp.714
74. Lacelle D, Fontaine M, Forest AP, Kokelj S. High-resolution stable water isotopes as tracers of thaw unconformities in permafrost: A case study from western Arctic Canada. Chem Geol. 2014; 368: 85–96. https://doi.org/10.1016/j.chemgeo.2014.01.005
75. Essery R, Pomeroy J. Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an Arctic tundra basin. J Hydrometeorol. 2004; 5(5): 735–744. https://doi.org/10.1175/1525-7541(2004)005<0735:VATCOW>2.0.CO;2
76. Hirashima H, Ohata T, Kodama Y, Yabuki H, Sato N, Georgiadi A. Nonuniform distribution of tundra snow cover in eastern Siberia. J Hydrometeorol. 2004; 5(3): 373–389. https://doi.org/10.1175/1525-7541(2004)005<0373:NDOTSC>2.0.CO;2
77. Raisanen J. Warmer climate: less or more snow? Clim Dyn. 2008; 30(2–3): 307–319. https://doi.org/10.1007/s00382-007-0289-y
78. Ise T, Dunn AL, Wofsy SC, Moorcroft PR. High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci. 2008; 1(11): 763–766. https://doi.org/10.1038/ngeo331
79. Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010; 3(5): 336–340. https://doi.org/10.1038/ngeo846
80. Callaghan TV, Johansson M, Brown RD, Groisman PY, Labba N, Radionov V, et al. The Changing Face of Arctic Snow Cover: A Synthesis of Observed and Projected Changes. Ambio. 2011; 40: 17–31. https://doi.org/10.1007/s13280-011-0212-y
81. Bring A, Fedorova I, Dibike Y, Hinzman L, Mard J, Mernild SH, et al. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J Geophys Res Biogeosci. 2016; 121(3): 621–649. https://doi.org/10.1002/2015JG003131
82. Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, et al. Thermal State of Permafrost in Russia. Permafr Periglac Process. 2010; 21(2): 136–155. https://doi.org/10.1002/ppp.683
83. Romanovsky VE, Sazonova TS, Balobaev VT, Shender NI, Sergueev DO. Past and recent changes in air and permafrost temperatures in eastern Siberia. Glob Planet Change. 2007; 56(3–4): 399–413. https://doi.org/10.1016/j.gloplacha.2006.07.022
84. Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc Nati Acad Sci USA. 2011; 108(36): 14769–14774. https://doi.org/10.1073/pnas.1103910108
85. Lawrence DM, Slater AG, Swenson SC. Simulation of Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4. J Clim. 2012; 25(7): 2207–2225. https://doi.org/10.1175/JCLI-D-11-00334.1
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis