The effectiveness of interferon beta versus glatiramer acetate and natalizumab versus fingolimod in a Polish real-world population
Autoři:
Katarzyna Kapica-Topczewska aff001; Joanna Tarasiuk aff001; Francois Collin aff002; Waldemar Brola aff003; Monika Chorąży aff001; Agata Czarnowska aff001; Mirosław Kwaśniewski aff002; Halina Bartosik-Psujek aff004; Monika Adamczyk-Sowa aff005; Jan Kochanowicz aff001; Alina Kułakowska aff001
Působiště autorů:
Department of Neurology, Medical University of Bialystok, Bialystok, Poland
aff001; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
aff002; The Faculty of Medicine and Health Sciences, Institute of Physiotherapy, Jan Kochanowski University, Kielce, Poland
aff003; Neurology Clinic with Brain Stroke Sub-Unit, Clinical Hospital No. 2 in Rzeszow, Medical Faculty, University of Rzeszow, Rzeszów, Poland
aff004; Department of Neurology in Zabrze, Medical University of Silesia, Zabrze, Poland
aff005
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223863
Souhrn
Objective
The aim of the study was to assess the effectiveness of disease-modifying therapies (DMTs) in relapsing-remitting multiple sclerosis (RRMS) patients treated in MS centres in Poland.
Methods
Demographic and clinical data of all Polish RRMS patients receiving DMTs were prospectively collected from 2014 to 2018 in electronic files using the Therapeutic Program Monitoring System (SMPT).
Results
The study included 10,764 RRMS patients treated with DMTs in first-line and 1,042 in second-line programmes. IFNβ more effectively lengthened the times to the first relapse, disability progression, and brain MRI activity than GA. After 2 and 4 years of follow-up, more patients on IFNβ showed no evidence of disease activity (NEDA-3) in comparison to GA (66.3% and 44.3% vs 55.2% and 33.2%, respectively; p<0.001). NAT more effectively reduced brain MRI activity than FTY (p = 0.001). More patients under NAT had NEDA-3 after 2 and 4 years of follow-up compared to FTY (66.2% and 42.1% vs 52.1% and 29.5%, respectively; p = 0.03). In adjusted analysis, a higher baseline Expanded Disability Status Score (EDSS) was a predictor of relapse (p<0.001) and NEDA-3 failure (p = 0.003).
Conclusion
IFNβ compared to GA and NAT compared to FTY more effectively reduced disease activity in a Polish population of RRMS patients.
Klíčová slova:
Drug therapy – Magnetic resonance imaging – Interferons – Lesions – Multiple sclerosis – Poland – Brain diseases – Polish people
Zdroje
1. Kalincik T, Butzkueven H. Observational data: Understanding the real MS world. Mult Scler. 2016; 22: 1642–1648. doi: 10.1177/1352458516653667 27270498
2. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011; 69: 292–302. doi: 10.1002/ana.22366 21387374
3. Baroncini D, Ghezzi A, Annovazzi PO, Colombo B, Martinelli V, Minonzio G, et al. Natalizumab versus fingolimod in patients with relapsing-remitting multiple sclerosis non-responding to first-line injectable therapies. Mult Scler. 2016; 22: 1315–1326. doi: 10.1177/1352458516650736 27230789
4. Rudick RA, Lee JC, Cutter GR, Miller DM, Bourdette D, Weinstock-Guttman B, et al. Disability progression in a clinical trial of relapsing-remitting multiple sclerosis: eight-year follow-up. Arch Neurol. 2010; 67: 1329–1335. doi: 10.1001/archneurol.2010.150 20625068
5. Saccà F, Lanzillo R, Signori A, Maniscalco GT, Signoriello E, Lo Fermo S, et. al. Determinant of therapy switch in multiple sclerosis treatment-naïve patients: A real-life study. Mult Scler. 2019; 25: 1263–1272. doi: 10.1177/1352458518790390 30044207
6. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013; 123: 958–965. doi: 10.1172/JCI64096 23454758
7. Laroni A, Signori A, Maniscalco GT, Lanzillo R, Russo CV, Binello E, et al. iMUST group. Assessing association of comorbidities with treatment choice and persistence in MS: A real-life multicenter study. Neurology 2017; 89: 2222–2229. doi: 10.1212/WNL.0000000000004686 29093064
8. La Mantia L, Di Pietrantonj C, Rovaris M, Rigon G, Frau S, Berardo F, et al. Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2016; 24: 11: CD009333. Review. doi: 10.1002/14651858.CD009333.pub3 27880972
9. Melendez-Torres GJ, Armoiry X, Court R, Patterson J, Kan A, Auguste P, et. al. Comparative effectiveness of beta-interferons and glatiramer acetate for relapsing remitting multiple sclerosis: systematic review and network meta analysis of trials including recommended dosages. BMC Neurol. 2018; 18: 162. doi: 10.1186/s12883-018-1162-9 30285675
10. Kappos L, Kuhle J, Multanen J, Kremenchutzky M, Verdun di Cantogno E, Cornelisse P, et al. Factors influencing long-term outcomes in relapsing-remitting multiple sclerosis: PRISMS-15. J Neurol Neurosurg Psychiatry 2015; 86: 1202–1207. doi: 10.1136/jnnp-2014-310024 26374702
11. Palace J, Duddy M, Lawton M, Bregenzer T, Zhu F, Boggild M, et al. Assessing the long-term effectiveness of interferon-beta and glatiramer acetate in multiple sclerosis: final 10-year results from the UK multiple sclerosis risk-sharing scheme. J Neurol Neurosurg Psychiatry 2019; 90: 251–260. doi: 10.1136/jnnp-2018-318360 30242090
12. Kim SH, Park MS, Kim W, Huh SY, Shin HJ, Hyun JW, et al. Real-World Effectiveness of Disease-Modifying Therapies in Korean Patients with Relapsing Multiple Sclerosis. J Clin Neurol. 2019;15:20–26. doi: 10.3988/jcn.2019.15.1.20 30375760
13. Signori A, Gallo F, Bovis F, Di Tullio N, Maietta I, Sormani MP. Long-term impact of interferon or Glatiramer acetate in multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord. 2016; 6: 57–63. doi: 10.1016/j.msard.2016.01.007 27063624
14. Healy BC, Glanz BI, Zurawski JD, Mazzola M, Chitnis T, Weiner HL. Long-term follow-up for multiple sclerosis patients initially treated with interferon-beta and glatiramer acetate. J Neurol Sci. 2018; 394: 127–131. doi: 10.1016/j.jns.2018.09.020 30248571
15. Guger M, Enzinger C, Leutmezer F, Kraus J, Kalcher S, Kvas E, et al. Real-life clinical use of natalizumab and fingolimod in Austria. Acta Neurol Scand. 2018; 137: 181–187. doi: 10.1111/ane.12864 29159801
16. Lanzillo R, Carotenuto A, Moccia M, Saccà F, Russo CV, Massarelli M, et al. A longitudinal real-life comparison study of natalizumab and fingolimod. Acta Neurol Scand. 2017; 136: 217–222. doi: 10.1111/ane.12718 27976804
17. Carruthers RL, Rotstein DL, Healy BC, Chitnis T, Weiner HL, Buckle GJ. An observational comparison of natalizumab vs. fingolimod using JCV serology to determine therapy. Mult Scler. 2014; 20: 1381–1390. doi: 10.1177/1352458514535282 24852928
18. Gajofatto A, Bianchi MR, Deotto L, Benedetti MD. Are natalizumab and fingolimod analogous second-line options for the treatment of relapsing-remitting multiple sclerosis? A clinical practice observational study. Eur Neurol. 2014; 72: 173–180. doi: 10.1159/000361044 25226868
19. Vollmer BL, Nair KV, Sillau S, Corboy JR, Vollmer T, Alvarez E. Natalizumab versus fingolimod and dimethyl fumarate in multiple sclerosis treatment. Ann Clin Transl Neurol. 2018; 6: 252–262. doi: 10.1002/acn3.700 30847358
20. Puthenparampil M, Cazzola C, Zywicki S, Federle L, Stropparo E, Anglani M, et al. NEDA-3 status including cortical lesions in the comparative evaluation of natalizumab versus fingolimod efficacy in multiple sclerosis. Ther Adv Neurol Disord. 2018; 11: 1756286418805713. doi: 10.1177/1756286418805713 30386435
21. Tsivgoulis G, Katsanos AH, Mavridis D, Grigoriadis N, Dardiotis E, Heliopoulos I, et al. HELANI (Hellenic Academy of Neuroimmunology). The Efficacy of Natalizumab versus Fingolimod for Patients with Relapsing-Remitting Multiple Sclerosis: A Systematic Review, Indirect Evidence from Randomized Placebo-Controlled Trials and Meta-Analysis of Observational Head-to-Head Trials. PLoS One 2016; 11: e 0163296.
22. Kalincik T, Horakova D, Spelman T, Jokubaitis V, Trojano M, Lugaresi A, et al. Switch to natalizumab versus fingolimod in active relapsing remitting multiple sclerosis. Ann Neurol. 2015; 77: 425–435. doi: 10.1002/ana.24339 25546031
23. Lorscheider J, Benkert P, Lienert C, Hänni P, Derfuss T, Kuhle J, et al. Comparative analysis of natalizumab versus fingolimod as second-line treatment in relapsing-remitting multiple sclerosis. Mult Scler. 2018; 24: 777–785. doi: 10.1177/1352458518768433 29685071
24. Correia I, Batista S, Marques IB, Sousa M, Ferreira R, Nunes C, et al. The effectiveness of fingolimod in a Portuguese real-world population. Mult Scler Relat Disord. 2016; 6: 41–48. doi: 10.1016/j.msard.2016.01.003 27063621
25. Bergvall N, Makin C, Lahoz R, Agashivala N, Pradhan A, Capkun G, et al. Relapse rates in patients with multiple sclerosis switching from interferon to fingolimod or glatiramer acetate: A US claims database study. PLoS ONE 2014; 9: e88472. doi: 10.1371/journal.pone.0088472 24516663
26. He A, Spelman T, Jokubaitis V, Havrdova E, Horakova D, Trojano M, et al. Comparison of switch to fingolimod or interferon beta/glatiramer acetate in active multiple sclerosis. JAMA Neurol. 2015; 72: 405–413. doi: 10.1001/jamaneurol.2014.4147 25665031
27. Berger T, Adamczyk-Sowa M, Csépány T, Fazekas F, Hojs Fabjan T, Horáková D, et al. Management of multiple sclerosis patient in central European countries: current needs and potential solutions. Ther Adv Neurol Disord. 2018; 11: 1756286418759189. doi: 10.1177/1756286418759189 29511382
28. Hegen H, Bsteh G, Berger T. 'No evidence of disease activity'—is it an appropriate surrogate in multiple sclerosis? Eur J Neurol. 2018; 25: 1107–1101. doi: 10.1111/ene.13669 29687559
29. Havrdova E, Giovannoni G, Gold R, Fox RJ, Kappos L, Phillips JT, et al. Effect of delayed-release dimethyl fumarate on no evidence of disease activity in relapsing-remitting multiple sclerosis: integrated analysis of the phase III DEFINE and CONFIRM studies. Eur J Neurol. 2017; 24: 726–733. doi: 10.1111/ene.13272 28328179
30. Goodin DS, Reder AT, Traboulsee AL, Li DK, Langdon D, Cutter G, et al. IFNB Multiple Sclerosis Study Group and the 16- and 21-Year LTF Investigators. Predictive validity of NEDA in the 16- and 21-year follow-up from the pivotal trial of interferon beta-1b. Mult Scler. 2019;;25:837–847. doi: 10.1177/1352458518773511 29761737
31. Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 2015; 72: 152–8. doi: 10.1001/jamaneurol.2014.3537 25531931
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs