The cost-effectiveness of controlling cervical cancer using a new 9-valent human papillomavirus vaccine among school-aged girls in Australia
Autoři:
Rashidul Alam Mahumud aff001; Khorshed Alam aff001; Jeff Dunn aff001; Jeff Gow aff001
Působiště autorů:
Health Economics and Policy Research, Centre for Health, Informatics and Economic Research, University of Southern Queensland, Toowoomba, Queensland, Australia
aff001; School of Commerce, University of Southern Queensland, Toowoomba, QLD Australia
aff002; Health Economics Research, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
aff003; Health and Epidemiology Research, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
aff004; Cancer Research Centre, Cancer Council Queensland, Fortitude Valley, QLD, Australia
aff005; Prostate Cancer Foundation of Australia, St Leonards NSW, Australia
aff006; School of Accounting, Economics and Finance, University of KwaZulu-Natal, Durban, South Africa
aff007
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223658
Souhrn
Introduction
Cervical cancer imposes a substantial health burden worldwide including in Australia and is caused by persistent infection with one of 13 sexually transmitted high-risk human papillomavirus (HPV) types. The objective of this study was to assess the cost-effectiveness of adding a nonavalent new Gardasil-9® (9vHPV) vaccine to the national immunisation schedule in Australia across three different delivery strategies.
Materials and methods
The Papillomavirus Rapid Interface for Modelling and Economics (PRIME) model was used to examine the cost-effectiveness of 9vHPV vaccine introduction to prevent HPV infection. Academic literature and anecdotal evidence were included on the demographic variables, cervical cancer incidence and mortality, treatment costs, and vaccine delivery costs. The incremental cost-effectiveness ratios (ICERs) were measured per disability-adjusted life years (DALYs) averted, using the heuristic cost-effectiveness threshold defined by the World Health Organisation (WHO). Analyses and data from international agencies were used in scenario analysis from the health system and societal perspectives.
Results
The 9vHPV vaccination was estimated to prevent 113 new cases of cervical cancer (discounted) during a 20-year period. From the health system and societal perspectives, the 9vHPV vaccination was very cost-effective in comparison with the status quo, with an ICER of A$47,008 and A$44,678 per DALY averted, respectively, using the heuristic cost-effectiveness threshold level. Considering delivery strategies, the ICERs per DALY averted were A$47,605, A$46,682, and A$46,738 for school, health facilities, and outreach-based vaccination programs from the health system perspective, wherein, from the societal perspective, the ICERs per DALY averted were A$46,378, A$43,729, A$43,930, respectively. All estimates of ICERs fell below the threshold level (A$73,267).
Conclusions
This cost-effectiveness evaluation suggests that the routine two-dose 9vHPV vaccination strategy of preadolescent girls against HPV is very cost-effective in Australia from both the health system and societal perspectives. If equally priced, the 9vHPV option is the most economically viable vaccine. Overall, this analysis seeks to contribute to an evidence-based recommendation about the new 9vHPV vaccination in the national immunisation program in Australia.
Klíčová slova:
Vaccination and immunization – Vaccines – Australia – Cervical cancer – Human papillomavirus infection – Cost-effectiveness analysis – Social systems – Cancer vaccines
Zdroje
1. World Health Organization (WHO). National cancer contro programmes: Cervical cancer statistics [Internet]. 2019 [cited 29 Aug 2019]. Available: https://www.who.int/cancer/prevention/diagnosis-screening/cervical-cancer/en/
2. Australian Institute of Health and Welfare. Cervical cancer in Australia: Cervical cancer statistics [Internet]. 2018 [cited 14 Feb 2019]. Available: https://cervical-cancer.canceraustralia.gov.au/statistics
3. Forman D, Lortet-Tieulent J, de Martel C, Ferlay J, Franceschi S, Plummer M, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30: F12–F23. doi: 10.1016/j.vaccine.2012.07.055 23199955
4. Centers for Disease Control (CDC). Genital HPV infection—fact sheet. Centers for disease control and prevention [Internet]. 2015 [cited 14 Feb 2019]. Available: http://www.cdc.gov/std/hpv/stdfact-hpv.htm
5. Mennini FS, Bonanni P, Bianic F, Waure C, Baio G, Plazzotta G, et al. Cost-effectiveness analysis of the nine-valent HPV vaccine in Italy. Cost Effectiveness and Resource Allocation. 2017;15: 1–14. doi: 10.1186/s12962-017-0063-x
6. Guan P, Howell-Jones R, Li N, Bruni L, De Sanjosé S, Franceschi S, et al. Human papillomavirus types in 115,789 HPV-positive women: A meta-analysis from cervical infection to cancer. International Journal of Cancer. 2012;131: 2349–2359. doi: 10.1002/ijc.27485 22323075
7. Li N, Franceschi S, Howell-Jones R, Snijders PJF, Clifford GM. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. International Journal of Cancer. 2011;128: 927–935. doi: 10.1002/ijc.25396 20473886
8. Giuliano AR, Nyitray AG, Kreimer AR, Pierce Campbell CM, Goodman MT, Sudenga SL, et al. EUROGIN 2014 roadmap: Differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection. International Journal of Cancer. 2015;136: 2752–2760. doi: 10.1002/ijc.29082 25043222
9. Patel C, Brotherton JML, Pillsbury A, Jayasinghe S, Donovan B, Macartney K, et al. The impact of 10 years of human papillomavirus (HPV) vaccination in Australia: What additional disease burden will a nonavalent vaccine prevent? Eurosurveillance. 2018;23: 30–40. doi: 10.2807/1560-7917.ES.2018.23.41.1700737 30326995
10. Jit M, Brisson M, Portnoy A, Hutubessy R. Cost-effectiveness of female human papillomavirus vaccination in 179 countries: A PRIME modelling study. Lancet Global Health. 2014;2: e406–e414. doi: 10.1016/S2214-109X(14)70237-2 25103394
11. Georgousakis M, Jayasinghe S, Brotherton J, Gilroy N, Chiu C, Macartney K. Population-wide vaccination against human papillomavirus in adolescent boys: Australia as a case study. Lancet Infectious Diseases. 2012;12: 627–634. doi: 10.1016/S1473-3099(12)70031-2 22445354
12. Ward K, Quinn H, Bachelor M, Bryant V, Campbell-Lloyd S, Newbound A, et al. Adolescent school-based vaccination in Australia. Commun Dis Intell Q Rep. 2013;37: E156–67. 24168090
13. Department of Health and Ageing. Immunise Australia program: human papillomavirus (HPV) [Internet]. [cited 13 Feb 2019]. Available: http://www.health.gov.au/internet/immunise/publishing.nsf/%0AContent/immunise-hpv
14. Smith MA, Canfell K. Projected impact of HPV vaccination and primary HPV screening on cervical adenocarcinoma: Example from Australia. Papillomavirus Research. 2017;3: 134–141. doi: 10.1016/j.pvr.2017.04.003 28720447
15. Office of the Prime Minister of Australia. A new vaccine to strengthen the health of young Australians [Internet]. 2017 [cited 13 Feb 2019]. Available: https://parlinfo.aph.gov.au/parlInfo/search/display/display.w3p;query=Id:%22media/pressrel/5562151%22
16. Serrano B, Alemany L, Tous S, Bruni L, Clifford GM, Weiss T, et al. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infectious Agents and Cancer. 2012;7: 1–13. doi: 10.1186/1750-9378-7-1
17. Brotherton JML, Tabrizi SN, Phillips S, Pyman J, Cornall AM, Lambie N, et al. Looking beyond human papillomavirus (HPV) genotype 16 and 18: Defining HPV genotype distribution in cervical cancers in Australia prior to vaccination. International Journal of Cancer. 2017;141: 1576–1584. doi: 10.1002/ijc.30871 28677147
18. Simms KT, Laprise JF, Smith MA, Lew J Bin, Caruana M, Brisson M, et al. Cost-effectiveness of the next generation nonavalent human papillomavirus vaccine in the context of primary human papillomavirus screening in Australia: A comparative modelling analysis. Lancet Public Health. 2016;1: e66–e75. doi: 10.1016/S2468-2667(16)30019-6 29253419
19. Drolet M, Laprise JF, Boily MC, Franco EL, Brisson M. Potential cost-effectiveness of the nonavalent human papillomavirus (HPV) vaccine. International Journal of Cancer. 2014;134: 2264–2268. doi: 10.1002/ijc.28541 24174175
20. Chesson HW, Meites E, Ekwueme DU, Saraiya M, Markowitz LE. Cost-effectiveness of nonavalent HPV vaccination among males aged 22 through 26years in the United States. Vaccine. 2018;36: 4362–4368. doi: 10.1016/j.vaccine.2018.04.071 29887325
21. Chesson HW, Laprise JF, Brisson M, Markowitz LE. Impact and cost-effectiveness of 3 doses of 9-valent human papillomavirus (HPV) vaccine among US females previously vaccinated with 4-valent hpv vaccine. Journal of Infectious Diseases. 2016;213: 1694–1700. doi: 10.1093/infdis/jiw046 26908738
22. Brisson M, Laprise JF, Chesson HW, Drolet M, Malagón T, Boily MC, et al. Health and economic impact of switching from a 4-Valent to a 9-valent HPV vaccination program in the United States. Journal of the National Cancer Institute. 2016;108: 1–9. doi: 10.1093/jnci/djv282 26438574
23. Laprise JF, Markowitz LE, Chesson HW, Drolet M, Brisson M. Comparison of 2-dose and 3-dose 9-valent human papillomavirus vaccine schedules in the United States: A cost-effectiveness analysis. Journal of Infectious Diseases. 2016;214: 685–688. doi: 10.1093/infdis/jiw227 27234416
24. Chesson HW, Markowitz LE, Hariri S, Ekwueme DU, Saraiya M. The impact and cost-effectiveness of nonavalent HPV vaccination in the United States: Estimates from a simplified transmission model. Human Vaccines and Immunotherapeutics. 2016;12: 1363–1372. doi: 10.1080/21645515.2016.1140288 26890978
25. Chesson HW, Laprise JF, Brisson M, Markowitz LE. Impact and cost-effectiveness of 3 doses of 9-valent human papillomavirus (HPV) vaccine among US females previously vaccinated with 4-valent hpv vaccine. Journal of Infectious Diseases. 2016;213: 1694–1700. doi: 10.1093/infdis/jiw046 26908738
26. Markowitz LE, Drolet M, Laprise J-F, Brisson M, Chesson HW. Comparison of 2-dose and 3-dose 9-valent humanpapillomavirus vaccine schedules in the United States: A cost-effectiveness analysis. Journal of Infectious Diseases. 2016;214: 685–688. doi: 10.1093/infdis/jiw227 27234416
27. Chesson HW, Laprise JF, Brisson M, Markowitz LE. Impact and Cost-effectiveness of 3 Doses of 9-Valent Human Papillomavirus (HPV) vaccine among US females previously vaccinated with 4-valent hpv vaccine. Journal of Infectious Diseases. 2016;213: 1694–1700. doi: 10.1093/infdis/jiw046 26908738
28. Largeron N, Petry KU, Jacob J, Bianic F, Anger D, Uhart M. An estimate of the public health impact and cost-effectiveness of universal vaccination with a 9-valent HPV vaccine in Germany. Expert Review of Pharmacoeconomics and Outcomes Research. 2017;17: 85–98. doi: 10.1080/14737167.2016.1208087 27366939
29. De La Fuente J, Hernandez Aguado JJ, Martín MS, Boix PR, Gómez SC, López N. Estimating the epidemiological impact and cost-effectiveness profile of a nonavalent hpv vaccine in Spain. Human Vaccines & Immunotherapeutics. 2019;15: 1949–1961. doi: 10.1080/21645515.2018.1560770 30698488
30. Kiatpongsan S, Kim JJ. Costs and cost-effectiveness of 9-valent human papillomavirus (HPV) vaccination in two east african countries. PLoS ONE. 2014;9: 1–6. doi: 10.1371/journal.pone.0106836 25198104
31. Edejer TT-T, Baltussen R, Adam T, Hutubessy R, Acharya A, Evans D., et al. Making choices in health: WHO guide to cost-effective analysis. 20 Avenue Appia, 1211 Geneva 27, Switzerland; 2003. Report No.: 9241546018.
32. Van Minh H, My NTT, Jit M. Cervical cancer treatment costs and cost-effectiveness analysis of human papillomavirus vaccination in Vietnam: A PRIME modeling study. BMC Health Services Research. 2017;17: 1–7. doi: 10.1186/s12913-016-1943-z
33. Harris AH, Hill SR, Chin G, Jing Jing Li, Walkom E. The role of value for money in public insurance coverage decisions for drugs in australia: A retrospective analysis 1994–2004. Medical Decision Making. 2008;28: 713–722. doi: 10.1177/0272989X08315247 18378939
34. George B, Harris A, Mitchell A. Cost-effectivenessanalysisandthe consistency of decision making: Evidence from pharmaceutical reimbursement in Australia (1991to1996). Pharmacoeconomics. 2001;19: 1103–1109. doi: 10.2165/00019053-200119110-00004 11735677
35. Henry DA, Hill SR, Harris A. Drug prices and value for money: The Australian Pharmaceutical Benefits Scheme. JAMA. 2005;294: 2630–2632. doi: 10.1001/jama.294.20.2630 16304078
36. Roche Products Pty Ltd. Access to oncology medicines in Australia, Roche response to Medicines Australia Oncology Industry Taskforce report. [Internet]. 2013. Available: medicinesaustralia.com.au/files/2013/07/%0A131021_OIT_Roche_response_FINAL_.pdf
37. Lowe A, Dyson S. New therapies for advanced cancers: Can our society afford them? Is it Ethical to deny patients access to them? Hilton Sydney, Australia; 2013.
38. WHO Commission on Macroeconomics and Health. Macroeconomics and health: Investing in health for economic development. Report of the Commission on Macroeconomics and Health [Internet]. 20 Avenue Appia, 1211 Geneva 27, Switzerland; 2001. Available: http://whqlibdoc.who.int/publications/2001/924154550x.pdf
39. Australian Technical Advisory Group on Immunisation (ATAGI). Clinical advice and fact sheet: Introduction of GARDASIL-9 (9vHPV) in a 2 dose schedule under the school-based national immunisation program (NIP). In: Department of Health, Australian Government. 2018.
40. Brotherton JM. Human papillomavirus vaccination update: Nonavalent vaccine and the two-dose schedule. Australian journal of general practice. 2018;47: 417–421. doi: 10.31128/AJGP-01-18-4462 30114867
41. Botwright S, Holroyd T, Nanda S, Bloem P, Griffiths UK, Sidibe A, et al. Experiences of operational costs of HPV vaccine delivery strategies in Gavi-supported demonstration projects. PLoS ONE. 2017;12: 1–13. doi: 10.1371/journal.pone.0182663 29016596
42. World Health Organization (WHO). WHO Cervical Cancer Prevention and Control Costing Tool (C4P): Immunization, Vaccines and Biologicals [Internet]. 2018. Available: https://www.who.int/immunization/diseases/hpv/cervical_cancer_costing_tool/en/
43. Lew JB, Howard K, Gertig D, Smith M, Clements M, Nickson C, et al. Expenditure and resource utilisation for cervical screening in Australia. BMC Health Services Research. 2012;12: 1. doi: 10.1186/1472-6963-12-1
44. Dubas-Jakóbczyk K, Kocot E, Seweryn M, Koperny M. Production lost due to cervical cancer in Poland in 2012. Medycyna Pracy. 2016;67: 289–299. doi: 10.13075/mp.5893.00378 27364103
45. Rice D. Estimating the cost of illness. American Journal of Public Health and the Nations Health. 2008;57: 424–440. doi: 10.2105/ajph.57.3.424 6066903
46. Sarker AR, Islam Z, Khan IA, Saha A, Chowdhury F, Khan AI, et al. Cost of illness for cholera in a high risk urban area in Bangladesh: an analysis from household perspective. BMC Infectious Diseases. 2013;13: 2–7. doi: 10.1186/1471-2334-13-2
47. The Australian Bureau of Statistics. Consumer price index, Australia, December 2018. [Internet]. 2019 [cited 11 Mar 2019]. Available: http://www.abs.gov.au/ausstats/abs@.nsf/mf/6401.0
48. Bray F, Ferlay J, Soerjomataram I. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2018;68: 394–424. doi: 10.3322/caac.21492 30207593
49. Drolet M, Laprise JF, Boily MC, Franco EL, Brisson M. Potential cost-effectiveness of the nonavalent human papillomavirus (HPV) vaccine. International Journal of Cancer. 2014;134: 2264–2268. doi: 10.1002/ijc.28541 24174175
50. The Australian Bureau of Statistics (ABS). Births registered, summary statistics for Australian: Australian Demographic Statistics (cat. no. 3101.0). 2018.
51. Donovan B, Marshall H, Macartney K, Patel C, Pillsbury A, Brotherton JM, et al. The impact of 10 years of human papillomavirus (HPV) vaccination in Australia: what additional disease burden will a nonavalent vaccine prevent? Eurosurveillance. 2018;23. doi: 10.2807/1560-7917.es.2018.23.41.1700737 30326995
52. Tan N, Sharma M, Winer R, Galloway D, Rees H, Barnabas R V. Model-estimated effectiveness of single dose 9-valent HPV vaccination for HIV-positive and HIV-negative females in South Africa. Vaccine. 2018;36: 4830–4836. doi: 10.1016/j.vaccine.2018.02.023 29891348
53. Zhang Z, Zhang J, Xia N, Zhao Q. Expanded strain coverage for a highly successful public health tool: Prophylactic 9-valent human papillomavirus vaccine. Human Vaccines and Immunotherapeutics. 2017;13: 2280–2291. doi: 10.1080/21645515.2017.1346755 28699820
54. Brotherton JML, Murray SL, Hall MA, Andrewartha LK, Banks CA, Meijer D, et al. Human papillomavirus vaccine coverage among female Australian adolescents: Success of the school-based approach. Medical Journal of Australia. 2013;199: 614–617. doi: 10.5694/mja13.10272 24182228
55. Brotherton JML, Winch KL, Bicknell L, Chappell G, Saville M. HPV vaccine coverage is increasing in Australia. Medical Journal of Australia. 2017;206: 262. doi: 10.5694/mja16.00958 28359009
56. Brisson M, Laprise JF, Chesson HW, Drolet M, Malagón T, Boily MC, et al. Health and economic impact of switching from a 4-Valent to a 9-valent HPV vaccination program in the United States. Journal of the National Cancer Institute. 2016;108: 1–9. doi: 10.1093/jnci/djv282 26438574
57. Explore Community Development Council. Immunisation Services: Immunisation price list 2018–19. In: City of Playford [Internet]. 2019 [cited 11 Mar 2019]. Available: https://www.playford.sa.gov.au/live/around-me/immunisation-services
58. Simms KT, Laprise JF, Smith MA, Lew J Bin, Caruana M, Brisson M, et al. Cost-effectiveness of the next generation nonavalent human papillomavirus vaccine in the context of primary human papillomavirus screening in Australia: a comparative modelling analysis. Lancet Public Health. 2016;1: e66–e75. doi: 10.1016/S2468-2667(16)30019-6 29253419
59. Chesson HW, Meites E, Ekwueme DU, Saraiya M, Markowitz LE. Cost-effectiveness of nonavalent HPV vaccination among males aged 22 through 26years in the United States. Vaccine. 2018;36: 4362–4368. doi: 10.1016/j.vaccine.2018.04.071 29887325
60. Jit M, Brisson M, Portnoy A, Hutubessy R. Cost-effectiveness of female human papillomavirus vaccination in 179 countries: A PRIME modelling study. Lancet Global Health. 2014;2: e406–e414. doi: 10.1016/S2214-109X(14)70237-2 25103394
61. The Australian Bureau of Statistics (ABS). Australian System of National Accounts, 2017–18: Population estimates are as published in the Australian Demographic Statistics (cat. no. 3101.0) and ABS projections. [Internet]. 2019. Available: https://search.abs.gov.au/s/search.html?collection=abs&form=simple&profile=_default&query=GDP+per+capita+in+2018
62. Boiron L, Joura E, Largeron N, Prager B, Uhart M. Estimating the cost-effectiveness profile of a universal vaccination programme with a nine-valent HPV vaccine in Austria. BMC Infectious Diseases. 2016;16: 1–15. doi: 10.1186/s12879-015-1330-0
63. Chesson HW, Markowitz LE, Hariri S, Ekwueme DU, Saraiya M. The impact and cost-effectiveness of nonavalent HPV vaccination in the United States: Estimates from a simplified transmission model. Human Vaccines and Immunotherapeutics. 2016;12: 1363–1372. doi: 10.1080/21645515.2016.1140288 26890978
64. Malagón T, Brisson M, Laprise J-F, Chesson HW, Markowitz LE, Drolet M, et al. Health and economic impact of switching from a 4-Valent to a 9-valent HPV vaccination program in the United States. Journal of the National Cancer Institute. 2015;108: 1–9. doi: 10.1093/jnci/djv282 26438574
65. Durham DP, Ndeffo-Mbah ML, Skrip LA, Jones FK, Bauch CT, Galvani AP. National- and state-level impact and cost-effectiveness of nonavalent HPV vaccination in the United States. Proceedings of the National Academy of Sciences. 2016;113: 5107–5112. doi: 10.1073/pnas.1515528113 27091978
66. Lerner D, Parsons SK, Justicia-Linde F, Chelmow D, Chang H, Rogers WH, et al. The impact of precancerous cervical lesions on functioning at work and work productivity. Journal of Occupational and Environmental Medicine. 2010;52: 926–933. doi: 10.1097/JOM.0b013e3181f12fb0 20798642
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis