Localization and characterization of thyroid microcalcifications: A histopathological study
Autoři:
Joanne Guerlain aff001; Sophie Perie aff002; Marine Lefevre aff003; Joëlle Perez aff001; Sophie Vandermeersch aff001; Chantal Jouanneau aff003; Léa Huguet aff001; Vincent Frochot aff004; Emmanuel Letavernier aff001; Raphael Weil aff005; Stéphan Rouziere aff005; Dominique Bazin aff006; Michel Daudon aff004; Jean-Philippe Haymann aff001
Působiště autorů:
Sorbonne Université, INSERM, UMR_S 1155, AP-HP, Hôpital Tenon, Paris, France
aff001; Service d’Oto-rhino-laryngologie et de Chirurgie Cervico-Faciale, Hôpital Tenon, Paris, France
aff002; Service d’Anatomopathologie, Hôpital Tenon, Paris, France
aff003; Service d’Explorations Fonctionnelles Multidisciplinaires, Assistance Publique—Hôpitaux de Paris (AP-HP), Hôpital Tenon, Paris, France
aff004; Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud, Université Paris Saclay, Orsay Cedex, France
aff005; Laboratoire de Chimie Physique, Université Paris Sud, Orsay, France
aff006
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224138
Souhrn
Thyroid calcification is frequent in thyroid nodules. The aim of our study was to evaluate the prevalence of calcifications in thyroid tissue samples of patients with various thyroid diseases, and to identify their composition according to their localization. Among 50 thyroid samples included, 56% were malignant (papillary carcinoma) and 44% were benign (adenoma, multinodular goiter, Graves’ disease, sarcoidosis). Calcifications were found in 95% of samples using polarised light microscopy, whereas only 12% were described in initial pathological reports. Three types were individualised and analyzed by infrared spectrometry (μFTIR): colloid calcifications composed of calcium oxalate, capsular calcifications and psammoma bodies, both composed of calcium phosphate. Of notice, psammoma bodies characterized by FE-SEM were composed of concentric structure suggesting a slow process for crystal deposition. Calcium phosphates were found only in malignant samples whereas calcium oxalate was not associated with a define pathology. Proliferation assessed by KI67 staining was high (33% of positive follicles), and RUNX2, OPN, and CD44 positive staining were detected in thyrocytes with a broad variation between samples. However, thyrocyte proliferation and differentiation markers were not associated with the number of crystals. TRPV5 and CaSR expression was also detected in thyrocytes. mRNA transcripts expression was confirmed in a subgroup of 10 patients, altogether with other calcium transporters such as PMCA1 or Cav1.3. Interestingly, TRPV5 mRNA expression was significantly associated with number of colloid calcifications (rho = -0.72; p = 0.02). The high prevalence of calcium oxalate crystals within colloid gel raises intriguing issues upon follicle physiology for calcium and oxalate transport.
Klíčová slova:
Crystal structure – Thyroid – Colloids – Calcification – Oxalates – Crystals – Polarized light microscopy – Sense strands
Zdroje
1. Schlumberger M. Papillary and follicular thyroid carcinoma. Ann Endocrinol (Paris). 2007;68:120–8.
2. Kim BK, Choi YS, Kwon HJ, Lee JS, Heo JJ, Han YJ et al. Relationship between patterns of calcification in thyroid nodules and histopathologic findings. Endocr J. 2013;60:155–60. doi: 10.1507/endocrj.ej12-0294 23047541
3. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Thyroid Association Guidelines for Ultrasound malignancy Risk Stratification of thyroid nodules in adults: the EU-TIRADS. Eur thyroid J. 2017;6:225–37. doi: 10.1159/000478927 29167761
4. Lee S. Microcalcification and intranodular coarse calcification are often found on preoperative ultrasounds of papillary thyroid carcinoma. Clin Thyroidol. 2012;24:2–3.
5. Richter MN, McCarty KS. Anisotropic crystalloids in the human thyroid gland. Am J Pathol. 1954;30:545–53. 13158527
6. Reid J, Choi CH, Oldroyd NO. Calcium Oxalate Crystals in the thyroid, their identification, prevalence, origin and possible significance. Am J Clin Pathol. 1987;87:443–54. doi: 10.1093/ajcp/87.4.443 2435146
7. Mathonnet M, Dessombz A, Bazin D, Weil R, Triponez F, Pusztaszeri M et al. Chemical diversity of calcifications in thyroid and hypothetical link to disease. Comptes Rendus Chimie. 2016;19:1672–78.
8. Shimizu M, Hirokawa M, Kanahara T, Manabe T. Calcium oxalate crystals in thyroid fine needle aspiration cytology. Acta Cytol. 1999;43:575–8. doi: 10.1159/000331148 10432877
9. Wahl R, Fuchs R, Kallee E. Oxalate in the human thyroid gland. Eur J Clin Chem Clin Biochem. 1993;31:559–65. 8260526
10. Katoh R, Kawaoi A, Muramatsu A, Hemmi A, Suzuki K. Birefringent (calcium oxalate) crystals in thyroid diseases. A clinicopathological study with possible implications for differential diagnosis. Am J Surg Pathol. 1993;17:698–705. doi: 10.1097/00000478-199307000-00007 8317610
11. Aribaş BK, Arda K, Çiledağ N Aktaş E, Çetindağ MF. Predictive factors for detecting malignancy in central and lateral cervical lymph nodes in papillary carcinoma of the thyroid. Asia Pac J Clin Oncol. 2011;7:307–14. doi: 10.1111/j.1743-7563.2011.01408.x 21884444
12. Chen G, Zhu XQ, Zou X, Yao J, Liang JX, Huang HB et al. Retrospective analysis of thyroid nodules by clinical and pathological characteristics, and ultrasonographically detected calcification correlated to thyroid carcinoma in South China. Eur Surg Res. 2009;42:137–42. doi: 10.1159/000196506 19174609
13. Berger N, Borda A. Pathologie thyroïdienne, parathyroïdienne et surrénalienne. Montpellier (France): Sauramps Medical, 2010.
14. Richter MN, McCarty KS. Anisotropic crystaloids in the human thyroid gland. Am J Pathol. 1940;16:654–5.
15. Dessombz A, Letavernier E, Haymann JP, Bazin D, Daudon M. Calcium phosphate stone morphology can reliably predict distal renal tubular acidosis. J Urol. 2015;193:1564–9. doi: 10.1016/j.juro.2014.12.017 25498572
16. Brisset F, Repoux M. Microscopie electronique à balayage et microanalyses. Les Ulis (France): EDP Sciences, 2009.
17. Rouzière S, Bazin D, Daudon M. In-lab X-ray fluorescence and diffraction techniques for pathological calcifications. Comptes Rendus Chimie. 2015;19:1404–15.
18. Bazin D, Haymann JP, Letavernier E, Rode J, Daudon M. Pathological calcifications: a medical diagnosis based on their physicochemical properties. Presse Med. 2014;43:135–48. doi: 10.1016/j.lpm.2013.02.333 23953927
19. Bazin D, Letavernier E, Haymann JP. Biomineralization versus microcrystalline pathologies: Beauty and the beast. Comptes Rendus Chimie. 2016:19;1395–1403.
20. Hunt JL, Barnes EL. Non-tumor-associated psammoma bodies in the thyroid. Am J Clin Pathol. 2003;119:90–4. doi: 10.1309/RWPP-YCBY-T2JV-A023 12520702
21. Bai Y, Zhou G, Nakamura M, Ozaki T, Mori I, Taniguchi E et al. Survival impact of psammoma body, stromal calcification, and bone formation in papillary thyroid carcinoma. Modern Pathol. 2009;22:887–94.
22. LiVolsi VA. Papillary thyroid carcinoma: an update. Modern Pathol. 2011;24:1–9.
23. Johannessen JV, Sobrinho-Somoes M. The origin and significance of thyroid psammoma bodies. Lab Invest. 1980;43:287–96. 7401638
24. Katoh R, Suzuki K, Hemmi A, Kawaoi A. Nature and significance of calcium oxalate crystals in normal human thyroid gland. A clinicopathological and immunohistochemical study. Virchows Arch A Pathol Anat Histopathol. 1993;422:301–306. doi: 10.1007/bf01608339 8506623
25. Daudon M, Letavernier E, Frochot V, Haymann JP, Bazin D, Jungers P. Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate monohydrate or dihydrate crystals. Comptes Rendus Chimie. 2016;19:1504–1513.
26. den Dekker E, Hoenderop JG, Nilius B, Bindels RJ. The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium. 2003;33:497–507. doi: 10.1016/s0143-4160(03)00065-4 12765695
27. Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D et al. High Expression of Transient Receptor Potential Channels in Human Breast Cancer Epithelial Cells and Tissues: correlation with pathological parameters. Cell Physiol Biochem. 2011;28:813–22. doi: 10.1159/000335795 22178934
28. Giusti L, Cetani F, Da Valle Y, Pardi E, Ciregia F, Donadio E et al. First evidence of TRPV5 and TRPV6 channels in human parathyroid glands: possible involvement in neoplastic transformation. J Cell Mol Med. 2014;18:1944–52. doi: 10.1111/jcmm.12372 25164318
29. Van Cromphaut S. Duodenal calcium absorption and steroid hormones: A Transgenic Mice Study. Leuven (Belgium): University Press, 2004.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis