#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Optofluidic laser speckle image decorrelation analysis for the assessment of red blood cell storage


Autoři: Hee-Jae Jeon aff001;  Muhammad Mohsin Qureshi aff001;  Seung Yeob Lee aff002;  Euiheon Chung aff001
Působiště autorů: Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea aff001;  Department of Laboratory Medicine, Chonnam National University Hospital, Gwangju, Korea aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224036

Souhrn

Red blood cells (RBCs) undergo irreversible biochemical and morphological changes during storage, contributing to the hemorheological changes of stored RBCs, which causes deterioration of microvascular perfusion in vivo. In this study, a home-built optofluidic system for laser speckle imaging of flowing stored RBCs through a transparent microfluidic channel was employed. The speckle decorrelation time (SDT) provides a quantitative measure of RBC changes, including aggregation in the microchannel. The SDT and relative light transmission intensity of the stored RBCs were monitored for 42 days. In addition, correlations between the decorrelation time, RBC flow speed through the channel, and relative light transmission intensity were obtained. The SDT of stored RBCs increased as the storage duration increased. The SDTs of the RBCs stored for 21 days did not significantly change. However, for the RBCs stored for over 35 days, the SDT increased significantly from 1.26 ± 0.27 ms to 6.12 ± 1.98 ms. In addition, we measured the relative light transmission intensity and RBC flow speed. As the RBC storage time increased, the relative light transmission intensity increased, whereas the RBC flow speed decreased in the microchannel. The optofluidic laser speckle image decorrelation time provides a quantitative measure of assessing the RBC condition during storage. Laser speckle image decorrelation analysis may serve as a convenient assay to monitor the property changes of stored RBCs.

Klíčová slova:

Blood – Blood plasma – Lasers – Blood flow – Viscosity – Specimen storage – Image analysis – Microfluidics


Zdroje

1. Vincent JL, Baron J-F, Reinhart K, Gattinoni L, Thijs L, Webb A, et al. Anemia and blood transfusion in critically ill patients. Jama. 2002;288(12):1499–507. doi: 10.1001/jama.288.12.1499 12243637

2. Schmied H, Reiter A, Kurz A, Sessler D, Kozek S. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. The Lancet. 1996;347(8997):289–92.

3. Moore G, Peck C, Sohmer P, Zuck T. Some properties of blood stored in anticoagulant CPDA‐1 solution. A brief summary. Transfusion. 1981;21(2):135–7. doi: 10.1046/j.1537-2995.1981.21281178147.x 7222197

4. Gilson CR, Kraus TS, Hod EA, Hendrickson JE, Spitalnik SL, Hillyer CD, et al. A novel mouse model of red blood cell storage and posttransfusion in vivo survival. Transfusion. 2009;49(8):1546–53. doi: 10.1111/j.1537-2995.2009.02173.x 19573176

5. Blasi B, D’alessandro A, Ramundo N, Zolla L. Red blood cell storage and cell morphology. Transfusion medicine. 2012;22(2):90–6. doi: 10.1111/j.1365-3148.2012.01139.x 22394111

6. Kim‐Shapiro DB, Lee J, Gladwin MT. Storage lesion: role of red blood cell breakdown. Transfusion. 2011;51(4):844–51. doi: 10.1111/j.1537-2995.2011.03100.x 21496045

7. Bennett-Guerrero E, Veldman TH, Doctor A, Telen MJ, Ortel TL, Reid TS, et al. Evolution of adverse changes in stored RBCs. Proceedings of the National Academy of Sciences. 2007;104(43):17063–8.

8. Kor DJ, Van Buskirk CM, Gajic O. Red blood cell storage lesion. Bosnian journal of basic medical sciences. 2009;9(Suppl 1):S21.

9. Barshtein G, Manny N, Yedgar S. Circulatory risk in the transfusion of red blood cells with impaired flow properties induced by storage. Transfusion medicine reviews. 2011;25(1):24–35. doi: 10.1016/j.tmrv.2010.08.004 21134624

10. Nagaprasad V, Singh M. Sequential analysis of the influence of blood storage on aggregation, deformability and shape parameters of erythrocytes. Clinical hemorheology and microcirculation. 1998;18(4):273–84. 9741668

11. Relevy H, Koshkaryev A, Manny N, Yedgar S, Barshtein G. Blood banking–induced alteration of red blood cell flow properties. Transfusion. 2008;48(1):136–46. doi: 10.1111/j.1537-2995.2007.01491.x 17900281

12. Uyuklu M, Cengiz M, Ulker P, Hever T, Tripette J, Connes P, et al. Effects of storage duration and temperature of human blood on red cell deformability and aggregation. Clinical hemorheology and microcirculation. 2009;41(4):269–78. doi: 10.3233/CH-2009-1178 19318720

13. Kim G, Lee M, Youn S, Lee E, Kwon D, Shin J, et al. Measurements of three-dimensional refractive index tomography and membrane deformability of live erythrocytes from Pelophylax nigromaculatus. Scientific reports. 2018;8(1):9192. doi: 10.1038/s41598-018-25886-8 29907826

14. Jeon H-J, Lee H, Yoon DS, Kim B-M. Dielectrophoretic force measurement of red blood cells exposed to oxidative stress using optical tweezers and a microfluidic chip. Biomedical engineering letters. 2017;7(4):317–23. doi: 10.1007/s13534-017-0041-4 30603182

15. Jang M, Ruan H, Vellekoop IM, Judkewitz B, Chung E, Yang C. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin. Biomedical optics express. 2015;6(1):72–85. doi: 10.1364/BOE.6.000072 25657876

16. Qureshi MM, Brake J, Jeon H-J, Ruan H, Liu Y, Safi AM, et al. In vivo study of optical speckle decorrelation time across depths in the mouse brain. Biomedical optics express. 2017;8(11):4855–64. doi: 10.1364/BOE.8.004855 29188086

17. Wu X, Pine D, Chaikin P, Huang J, Weitz D. Diffusing-wave spectroscopy in a shear flow. Journal of the Optical Society of America B. 1990;7(1):15–20.

18. Hovav T, Yedgar S, Manny N, Barshtein G. Alteration of red cell aggregability and shape during blood storage. Transfusion. 1999;39(3):277–81. doi: 10.1046/j.1537-2995.1999.39399219284.x 10204590

19. Risbano MG, Kanias T, Triulzi D, Donadee C, Barge S, Badlam J, et al. Effects of aged stored autologous red blood cells on human endothelial function. American journal of respiratory and critical care medicine. 2015;192(10):1223–33. doi: 10.1164/rccm.201501-0145OC 26222884

20. Kumar M, Dandapat S, Sinha MP, Kumar A, Raipat BS. Different blood collection methods from rats: A review. Balneo Research Journal. 2017;8(2):46–50.

21. Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Accounts of chemical research. 2013;46(11):2396–406. doi: 10.1021/ar300314s 24245999

22. Brake J, Jang M, Yang C. Analyzing the relationship between decorrelation time and tissue thickness in acute rat brain slices using multispeckle diffusing wave spectroscopy. Journal of the Optical Society of America A. 2016;33(2):270–5.

23. Song S-H, Lim C-S, Shin S. Migration distance-based platelet function analysis in a microfluidic system. Biomicrofluidics. 2013;7(6):064101.

24. Song S-H, Lim C-S, Shin S. Scalable evaluation of platelet aggregation by the degree of blood migration. Applied Physics Letters. 2013;103(24):243702.

25. Baskurt OK, Meiselman HJ. Erythrocyte aggregation: basic aspects and clinical importance. Clinical hemorheology and microcirculation. 2013;53(1–2):23–37. doi: 10.3233/CH-2012-1573 22975932

26. Ljung GM, Box GE. On a measure of lack of fit in time series models. Biometrika. 1978;65(2):297–303.

27. Baskurt OK, Uyuklu M, Ulker P, Cengiz M, Nemeth N, Alexy T, et al. Comparison of three instruments for measuring red blood cell aggregation. Clinical hemorheology and microcirculation. 2009;43(4):283–98. doi: 10.3233/CH-2009-1240 19996518

28. Bauersachs R, Wenby R, Meiselman H. Determination of specific red blood cell aggregation indices via an automated system. Clinical hemorheology and microcirculation. 1989;9(1):1–25.

29. Klose H, Volger E, Brechtelsbauer H, Heinich L, Schmid-Schönbein H. Microrheology and light transmission of blood. Pfluegers Archiv. 1972;333(2):126–39. doi: 10.1007/bf00586912 4538028

30. D’Alessandro A, Liumbruno G, Grazzini G, Zolla L. Red blood cell storage: the story so far. Blood Transfusion. 2010;8(2):82. doi: 10.2450/2009.0122-09 20383300

31. Lim H-J, Nam J-H, Lee B-K, Suh J-S, Shin S. Alteration of red blood cell aggregation during blood storage. Korea-Australia Rheology Journal. 2011;23(2):67–70.

32. Almac E, Ince C. The impact of storage on red cell function in blood transfusion. Best practice & research Clinical anaesthesiology. 2007;21(2):195–208.

33. Puniyani RR. Clinical hemorheology: new horizons: New Age International; 1996.

34. Boas DA. Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications: Ph.D. dissertation, University of Pennsylvania, 1996.

35. Xu Z, Zheng Y, Wang X, Shehata N, Wang C, Sun Y. Stiffness increase of red blood cells during storage Microsystems & Nanoengineering. 2018;4:17103.

36. Huang S, Hou HW, Kanias T, Sertorio JT, Chen H, Sinchar D, et al. Towards microfluidic-based depletion of stiff and fragile human red cells that accumulate during blood storage. Lab on a Chip. 2015;15(2):448–58. doi: 10.1039/c4lc00768a 25406942

37. Shin S, Yang Y, Suh J-S. Measurement of erythrocyte aggregation in a microchip stirring system by light transmission. Clinical hemorheology and microcirculation. 2009;41(3):197–207. doi: 10.3233/CH-2009-1172 19276517

38. Fine I, Fikhte B, Shvartsman LD, editors. RBC-aggregation-assisted light transmission through blood and occlusion oximetry. Controlling Tissue Optical Properties: Applications in Clinical Study; 2000;4162:130–139.

39. Shin S, Jang J, Park M, Ku Y, Suh J. Light-transmission aggregometer using a vibration-induced disaggregation mechanism. Review of scientific instruments. 2005;76(1):016107.

40. Bauersachs R, Wenby R, Pfafferott C, Whittingstall P, Meiselman H. Determination of red cell deformation via measurement of light transmission through RBC suspensions under shear. Clinical Hemorheology and Microcirculation. 1992;12(6):841–56.

41. Chien S. Determinants of blood viscosity and red cell deformability. Scandinavian Journal of Clinical and Laboratory Investigation. 1981;41(sup156):7–12.

42. Hardeman M, Dobbe J, Ince C. The Laser‐assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer. Clinical hemorheology and microcirculation. 2001;25(1):1–11. 11790865

43. Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophysical journal. 2004;87(6):4259–70. doi: 10.1529/biophysj.104.047746 15361408

44. Gautam R, Oh J-Y, Marques MB, Dluhy RA, Patel RP. Characterization of Storage-Induced Red Blood Cell Hemolysis Using Raman Spectroscopy. Laboratory medicine. 2018.

45. Chien S, Jan KM. Red cell aggregation by macromolecules: roles of surface adsorption and electrostatic repulsion. Journal of supramolecular structure. 1973;1(4‐5):385–409.

46. Karon BS, Van Buskirk CM, Jaben EA, Hoyer JD, Thomas DD. Temporal sequence of major biochemical events during blood bank storage of packed red blood cells. Blood Transfusion. 2012;10(4):453. doi: 10.2450/2012.0099-11 22507860


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#