#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Micro-RNA 150-5p predicts overt heart failure in patients with univentricular hearts


Autoři: Masood Abu-Halima aff001;  Eckart Meese aff001;  Mohamad Ali Saleh aff002;  Andreas Keller aff003;  Hashim Abdul-Khaliq aff002;  Tanja Raedle-Hurst aff002
Působiště autorů: Institute of Human Genetics, Saarland University Medical Center, Homburg/Saar, Germany aff001;  Department of Pediatric Cardiology, Saarland University Medical Center, Homburg/Saar, Germany aff002;  Center for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223606

Souhrn

Background

In patients with left heart failure, micro-RNAs (miRNAs) have been shown to be of diagnostic and prognostic value. The present study aims to identify those miRNAs in patients with univentricular heart (UVH) disease that may be associated with overt heart failure.

Methods

A large panel of human miRNA arrays were used to determine miRNA expression profiles in the blood of 48 UVH patients and 32 healthy controls. For further selection, the most abundantly expressed miRNA arrays were related to clinical measures of heart failure and selected miRNAs validated by polymerase chain reaction were used for the prediction of overt heart failure and all-cause mortality.

Results

According to microarray analysis, 50 miRNAs were found to be significantly abundant in UVH patients of which miR-150-5p was best related to heart failure parameters. According to ROC analysis, NT-proBNP levels (AUC 0.940, 95% CI 0.873–1.000; p = 0.001), miR-150-5p (AUC 0.905, 95% CI 0.779–1.000; p = 0.001) and a higher NYHA class ≥ III (AUC 0.893, 95% CI 0.713–1.000; p = 0.002) were the 3 most significant predictors of overt heart failure. Using a combined biomarker model, AUC increased to 0.980 indicating an additive value of miR-150-5p. Moreover, in the multivariate analysis, a higher NYHA class ≥ III (p = 0.005) and miR-150-5p (p = 0.006) turned out to be independent predictors of overt heart failure.

Conclusion

In patients with UVH, miR-150-5p is an independent predictor of overt heart failure and thus may be used in the risk assessment of these patients.

Klíčová slova:

Blood – MicroRNAs – Troponin – Heart failure – Microarrays – Cardiac ventricles


Zdroje

1. O'Leary PW. Prevalence, clinical presentation and natural history of patients with single ventricle. Progress in pediatric cardiology. 2002;16(1):31–8.

2. Gewillig M. The Fontan circulation. Heart. 2005;91(6):839–46. doi: 10.1136/hrt.2004.051789 15894794.

3. Gewillig M, Brown SC, Eyskens B, Heying R, Ganame J, Budts W, et al. The Fontan circulation: who controls cardiac output? Interact Cardiovasc Thorac Surg. 2010;10(3):428–33. doi: 10.1510/icvts.2009.218594 19995891.

4. Khairy P, Fernandes SM, Mayer JE Jr., Triedman JK, Walsh EP, Lock JE, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation. 2008;117(1):85–92. doi: 10.1161/CIRCULATIONAHA.107.738559 18071068.

5. Giannakoulas G, Dimopoulos K, Yuksel S, Inuzuka R, Pijuan-Domenech A, Hussain W, et al. Atrial tachyarrhythmias late after Fontan operation are related to increase in mortality and hospitalization. Int J Cardiol. 2012;157(2):221–6. Epub 2011/01/05. doi: 10.1016/j.ijcard.2010.12.049 21196055.

6. McCrindle BW, Manlhiot C, Cochrane A, Roberts R, Hughes M, Szechtman B, et al. Factors associated with thrombotic complications after the Fontan procedure: a secondary analysis of a multicenter, randomized trial of primary thromboprophylaxis for 2 years after the Fontan procedure. J Am Coll Cardiol. 2013;61(3):346–53. Epub 2012/12/19. doi: 10.1016/j.jacc.2012.08.1023 23246393.

7. Ohuchi H, Yasuda K, Miyazaki A, Ono S, Hayama Y, Negishi J, et al. Prevalence and predictors of haemostatic complications in 412 Fontan patients: their relation to anticoagulation and haemodynamics. Eur J Cardiothorac Surg. 2015;47(3):511–9. Epub 2014/04/05. doi: 10.1093/ejcts/ezu145 24699205.

8. Ghaferi AA, Hutchins GM. Progression of liver pathology in patients undergoing the Fontan procedure: Chronic passive congestion, cardiac cirrhosis, hepatic adenoma, and hepatocellular carcinoma. J Thorac Cardiovasc Surg. 2005;129(6):1348–52. doi: 10.1016/j.jtcvs.2004.10.005 15942576.

9. Baek JS, Bae EJ, Ko JS, Kim GB, Kwon BS, Lee SY, et al. Late hepatic complications after Fontan operation; non-invasive markers of hepatic fibrosis and risk factors. Heart. 2010;96(21):1750–5. Epub 2010/10/20. doi: 10.1136/hrt.2010.201772 20956491.

10. Goldberg DJ, Surrey LF, Glatz AC, Dodds K, O'Byrne ML, Lin HC, et al. Hepatic Fibrosis Is Universal Following Fontan Operation, and Severity is Associated With Time From Surgery: A Liver Biopsy and Hemodynamic Study. Journal of the American Heart Association. 2017;6(5). Epub 2017/04/28. doi: 10.1161/jaha.116.004809 28446492.

11. Tijsen AJ, Pinto YM, Creemers EE. Non-cardiomyocyte microRNAs in heart failure. Cardiovascular research. 2012;93(4):573–82. Epub 2011/12/20. doi: 10.1093/cvr/cvr344 22180601.

12. Melman YF, Shah R, Das S. MicroRNAs in heart failure: is the picture becoming less miRky? Circulation Heart failure. 2014;7(1):203–14. Epub 2014/01/23. doi: 10.1161/CIRCHEARTFAILURE.113.000266 24449811.

13. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, et al. Altered microRNA expression in human heart disease. Physiological genomics. 2007;31(3):367–73. Epub 2007/08/23. doi: 10.1152/physiolgenomics.00144.2007 17712037.

14. Bagnall RD, Tsoutsman T, Shephard RE, Ritchie W, Semsarian C. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PloS one. 2012;7(9):e44744. Epub 2012/10/02. doi: 10.1371/journal.pone.0044744 23024758.

15. Wong LL, Armugam A, Sepramaniam S, Karolina DS, Lim KY, Lim JY, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail. 2015;17(4):393–404. Epub 2015/01/27. doi: 10.1002/ejhf.223 25619197.

16. Ovchinnikova ES, Schmitter D, Vegter EL, Ter Maaten JM, Valente MA, Liu LC, et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail. 2016;18(4):414–23. Epub 2015/09/09. doi: 10.1002/ejhf.332 26345695.

17. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8. Epub 2008/07/30. doi: 10.1073/pnas.0804549105 18663219.

18. Qiang L, Hong L, Ningfu W, Huaihong C, Jing W. Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Int J Cardiol. 2013;168(3):2082–8. Epub 2013/03/08. doi: 10.1016/j.ijcard.2013.01.160 23465244.

19. Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M, et al. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail. 2013;15(11):1277–88. Epub 2013/06/06. doi: 10.1093/eurjhf/hft088 23736534.

20. Morley-Smith AC, Mills A, Jacobs S, Meyns B, Rega F, Simon AR, et al. Circulating microRNAs for predicting and monitoring response to mechanical circulatory support from a left ventricular assist device. Eur J Heart Fail. 2014;16(8):871–9. Epub 2014/06/26. doi: 10.1002/ejhf.116 24961598.

21. Lai CT, Ng EK, Chow PC, Kwong A, Cheung YF. Circulating microRNA expression profile and systemic right ventricular function in adults after atrial switch operation for complete transposition of the great arteries. BMC cardiovascular disorders. 2013;13:73. Epub 2013/09/18. doi: 10.1186/1471-2261-13-73 24040857.

22. Abu-Halima M, Meese E, Keller A, Abdul-Khaliq H, Radle-Hurst T. Analysis of circulating microRNAs in patients with repaired Tetralogy of Fallot with and without heart failure. Journal of translational medicine. 2017;15(1):156. Epub 2017/07/12. doi: 10.1186/s12967-017-1255-z 28693530.

23. Ramachandran S, Lowenthal A, Ritner C, Lowenthal S, Bernstein HS. Plasma microvesicle analysis identifies microRNA 129-5p as a biomarker of heart failure in univentricular heart disease. PloS one. 2017;12(8):e0183624. Epub 2017/09/01. doi: 10.1371/journal.pone.0183624 28859128.

24. Laqqan M, Schwaighofer C, Graeber S, Raedle-Hurst T. Predictive value of soluble ST2 in adolescent and adult patients with complex congenital heart disease. PloS one. 2018;13(8):e0202406. Epub 2018/08/18. doi: 10.1371/journal.pone.0202406 30118521.

25. Abu-Halima M, Kahraman M, Henn D, Radle-Hurst T, Keller A, Abdul-Khaliq H, et al. Deregulated microRNA and mRNA expression profiles in the peripheral blood of patients with Marfan syndrome. Journal of translational medicine. 2018;16(1):60. Epub 2018/03/14. doi: 10.1186/s12967-018-1429-3 29530068.

26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8. Epub 2002/02/16. doi: 10.1006/meth.2001.1262 11846609.

27. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45. Epub 1988/09/01. 3203132.

28. Scrutinio D, Conserva F, Passantino A, Iacoviello M, Lagioia R, Gesualdo L. Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: A genome-wide prospective study. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation. 2017;36(6):616–24. Epub 2017/03/06. doi: 10.1016/j.healun.2017.02.008 28259597.

29. Goren Y, Meiri E, Hogan C, Mitchell H, Lebanony D, Salman N, et al. Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am J Cardiol. 2014;113(6):976–81. Epub 2014/01/28. doi: 10.1016/j.amjcard.2013.11.060 24462065.

30. Devaux Y, Vausort M, McCann GP, Zangrando J, Kelly D, Razvi N, et al. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circulation Cardiovascular genetics. 2013;6(3):290–8. Epub 2013/04/03. doi: 10.1161/CIRCGENETICS.113.000077 23547171.

31. Devaux Y, Vausort M, McCann GP, Kelly D, Collignon O, Ng LL, et al. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PloS one. 2013;8(8):e70644. Epub 2013/08/24. doi: 10.1371/journal.pone.0070644 23967079.

32. Tang Y, Wang Y, Park KM, Hu Q, Teoh JP, Broskova Z, et al. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovascular research. 2015;106(3):387–97. Epub 2015/04/01. doi: 10.1093/cvr/cvv121 25824147.

33. Liao JM, Cao B, Zhou X, Lu H. New insights into p53 functions through its target microRNAs. Journal of molecular cell biology. 2014;6(3):206–13. Epub 2014/04/18. doi: 10.1093/jmcb/mju018 24740682.

34. Sano T, Ogawa M, Taniguchi K, Matsuda H, Nakajima T, Arisawa J, et al. Assessment of ventricular contractile state and function in patients with univentricular heart. Circulation. 1989;79(6):1247–56. Epub 1989/06/01. doi: 10.1161/01.cir.79.6.1247 2720926.

35. Baggen VJ, van den Bosch AE, Eindhoven JA, Schut AW, Cuypers JA, Witsenburg M, et al. Prognostic Value of N-Terminal Pro-B-Type Natriuretic Peptide, Troponin-T, and Growth-Differentiation Factor 15 in Adult Congenital Heart Disease. Circulation. 2017;135(3):264–79. Epub 2016/11/11. doi: 10.1161/CIRCULATIONAHA.116.023255 27832613.

36. Van De Bruaene A, Hickey EJ, Kovacs AH, Crean AM, Wald RM, Silversides CK, et al. Phenotype, management and predictors of outcome in a large cohort of adult congenital heart disease patients with heart failure. Int J Cardiol. 2018;252:80–7. Epub 2017/11/07. doi: 10.1016/j.ijcard.2017.10.086 29103857.

37. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research. 2008;18(10):997–1006. Epub 2008/09/04. doi: 10.1038/cr.2008.282 18766170.

38. Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E, Kimura T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Molecular cancer. 2016;15(1):48. Epub 2016/06/28. doi: 10.1186/s12943-016-0536-0 27343009.

39. Endzelins E, Berger A, Melne V, Bajo-Santos C, Sobolevska K, Abols A, et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. 2017;17(1):730. doi: 10.1186/s12885-017-3737-z 29121858.

40. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods (San Diego, Calif). 2010;50(4):298–301. Epub 2010/02/12. doi: 10.1016/j.ymeth.2010.01.032 20146939.


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#