Neutrophil elastase inhibitor purification strategy from cowpea seeds
Autoři:
Graziele Cristina Ferreira aff001; Adriana Feliciano Alves Duran aff001; Flavia Ribeiro Santos da Silva aff001; Livia de Moraes Bomediano aff001; Gabriel Capella Machado aff001; Sergio Daishi Sasaki aff001
Působiště autorů:
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223713
Souhrn
Serine proteases and its inhibitors are involved in physiological process and its deregulation lead to various diseases like Chronic Obstructive Pulmonary Disease (COPD), pulmonary emphysema, skin diseases, atherosclerosis, coagulation diseases, cancer, inflammatory diseases, neuronal disorders and other diseases. Serine protease inhibitors have been described in many species, as well as in plants, including cowpea beans (Vigna unguiculata (L.) Walp). Here, we purified and characterized a protease inhibitor, named VuEI (Vigna unguiculata elastase inhibitor), from Vigna unguiculata, with inhibitory activity against HNE (human neutrophil elastase) and chymotrypsin but has no inhibitory activity against trypsin and thrombin. VuEI was obtained by alkaline protein extraction followed by three different chromatographic steps in sequence. First, an ion exchange chromatography using Hitrap Q column was employed, followed by two reversed-phase chromatography using Source15RPC and ACE18 columns. The molecular mass of VuEI was estimated in 10.99 kDa by MALDI-TOF mass spectrometry. The dissociation constant (Ki) to HNE was 9 pM. These data indicate that VuEI is a potent inhibitor of human neutrophil elastase, besides to inhibit chymotrypsin.
Klíčová slova:
Protein extraction – Proteases – Inflammatory diseases – Serine proteases – Neutrophils – Enzyme inhibitors – Chymotrypsin – Ion exchange chromatography
Zdroje
1. Laskowski M, Kato I. Protein Inhibitors of Proteinases. Annu Rev Biochem. 1980;49: 593–626. doi: 10.1146/annurev.bi.49.070180.003113 6996568
2. Bode W, Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992;204: 433–451. doi: 10.1111/j.1432-1033.1992.tb16654.x 1541261
3. Laskowski M, Qasim MA. What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim Biophys Acta—Protein Struct Mol Enzymol. 2000;1477: 324–337. doi: 10.1016/S0167-4838(99)00284-8
4. Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors. Biochem J. 2004;378: 705–716. doi: 10.1042/BJ20031825 14705960
5. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PGW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem. 2001;276: 33293–33296. doi: 10.1074/jbc.R100016200 11435447
6. Fluhr R, Lampl N, Roberts TH. Serpin protease inhibitors in plant biology. Physiol Plant. 2012;145: 95–102. doi: 10.1111/j.1399-3054.2011.01540.x 22085334
7. Shewry PR, Lucas JA. Plant Proteins that Confer Resistance to Pests and Pathogens. Advances in Botanical Research. 1997. pp. 135–192. doi: 10.1016/S0065-2296(08)60120-2
8. Oliveira C, Navarro-Xavier RA, Anjos-Vallota EA, Martins JO, Silveira VLF, Gonçalves LRC, et al. Effect of plant neutrophil elastase inhibitor on leucocyte migration, adhesion and cytokine release in inflammatory conditions. Br J Pharmacol. 2010;161: 899–910. doi: 10.1111/j.1476-5381.2010.00924.x 20860667
9. Shamsi TN, Parveen R, Fatima S. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int J Biol Macromol. Elsevier B.V.; 2016;91: 1120–1133. doi: 10.1016/j.ijbiomac.2016.02.069 26955746
10. Volpicella M, Leoni C, Costanza A, De Leo F, Gallerani R, Ceci LR. Cystatins, serpins and other families of protease inhibitors in plants. Curr Protein Pept Sci. 2011;12: 386–98. Available: http://www.ncbi.nlm.nih.gov/pubmed/21418017 21418017
11. Birk Y. The Bowman-Birk inhibitor. Trypsin- and chymotrypsin-inhibitor from soybeans. Int J Pept Protein Res. 1985;25: 113–31. Available: http://www.ncbi.nlm.nih.gov/pubmed/3886572 doi: 10.1111/j.1399-3011.1985.tb02155.x 3886572
12. Birk Y, Gertler A, Khalef S. A pure trypsin inhibitor from soya beans. Biochem J. 1963;87: 281–4. doi: 10.1042/bj0870281 13968438
13. Habib H, Fazili KM. Plant protease inhibitors: a defense strategy in plants. Biotechnol Mol Biol Rev. 2007;2: 68–85. Available: http://www.academicjournals.org/app/webroot/article/article1380100578_Habeeb and Khalid.pdf
14. Tanaka AS, Sampaio MU, Mentele R, Auerswald EA, Sampaio CA. Sequence of a new Bowman-Birk inhibitor from Torresea acreana seeds and comparison with Torresea cearensis trypsin inhibitor (TcTI2). J Protein Chem. 1996;15: 553–60. Available: http://www.ncbi.nlm.nih.gov/pubmed/8895102 doi: 10.1007/bf01908537 8895102
15. Clemente A, Del Carmen Arques M. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J Gastroenterol. 2014;20: 10305–10315. doi: 10.3748/wjg.v20.i30.10305 25132747
16. Paiva PMG, Oliva MLV, Fritz H, Coelho LCBB, Sampaio CAM. Purification and primary structure determination of two Bowman–Birk type trypsin isoinhibitors from Cratylia mollis seeds. Phytochemistry. 2006;67: 545–552. doi: 10.1016/j.phytochem.2005.12.017 16442573
17. Arques MC, Marín-Manzano MC, Da Rocha LCB, Hernandez-Ledesma B, Recio I, Clemente A. Quantitative determination of active Bowman-Birk isoinhibitors, IBB1 and IBBD2, in commercial soymilks. Food Chem. Elsevier Ltd; 2014;155: 24–30. doi: 10.1016/j.foodchem.2014.01.024 24594149
18. Mello MO, Tanaka AS, Silva-Filho MC. Molecular evolution of Bowman-Birk type proteinase inhibitors in flowering plants. Mol Phylogenet Evol. 2003;27: 103–112. doi: 10.1016/S1055-7903(02)00373-1 12679075
19. Lopes AR, Juliano MA, Juliano L, Terra WR. Coevolution of Insect Trypsins and Inhibitors. Arch Insect Biochem Physiol. 2004;55: 140–152. doi: 10.1002/arch.10134 14981658
20. Li de la Sierra I, Quillien L, Flecker P, Gueguen J, Brunie S. Dimeric Crystal Structure of a Bowman-Birk Protease Inhibitor from Pea Seeds. J Mol Biol. 1999;285: 1195–1207. doi: 10.1006/jmbi.1998.2351 9887273
21. Paiva PMG, Pontual E V, Coelho LCBB, Napoleão TH. Protease inhibitors from plants: Biotechnological insights with emphasis on their effects on microbial pathogens. In: Méndez-Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education. 2013. pp. 641–649.
22. Major IT, Constabel CP. Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol. 2008;146: 888–903. doi: 10.1104/pp.107.106229 18024557
23. Oliva MLV, Ferreira R da S, Ferreira JG, de Paula CAA, Salas CE, Sampaio MU. Structural and functional properties of kunitz proteinase inhibitors from leguminosae: a mini review. Curr Protein Pept Sci. 2011;12: 348–57. Available: http://www.ncbi.nlm.nih.gov/pubmed/21418019 21418019
24. Song HK, Suh SW. Kunitz-type soybean trypsin inhibitor revisited: refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator. J Mol Biol. 1998;275: 347–363. doi: 10.1006/jmbi.1997.1469 9466914
25. Oliva ML V, Silva MCC, Sallai RC, Brito M V., Sampaio MU. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie. 2010;92: 1667–1673. doi: 10.1016/j.biochi.2010.03.021 20363284
26. Bode W, Huber R. Structural basis of the endoproteinase–protein inhibitor interaction. Biochim Biophys Acta—Protein Struct Mol Enzymol. 2000;1477: 241–252. doi: 10.1016/S0167-4838(99)00276-9
27. Hung C-H, Lee M-C, Lin J-Y. Inactivation of Acacia confusa trypsin inhibitor by site-specific mutagenesis. FEBS Lett. 1994;353: 312–314. doi: 10.1016/0014-5793(94)01066-8 7957882
28. Ventura MM, Xavier Filho J, Moreira RA, Aquino A de menezes, Pinheiro PA. A trypsin and chymotrypsin inhibitor from black-eyed pea (Vigna sinensis L.). II. Further studies on its characterization and a reevaluation of earlier results. An Acad Bras Cienc. 1971;43: 233–42. Available: http://www.ncbi.nlm.nih.gov/pubmed/5157234 5157234
29. Morhy L, Ventura MM. The complete amino acid sequence of the Vigna unguiculata (L.) Walp. seed trypsin and chymotrypsin inhibitor. An Acad Bras Cienc. 1987;59: 71–81. Available: http://www.ncbi.nlm.nih.gov/pubmed/3426000 3426000
30. Silva LP da, Leite JRSA, Bloch C Jr., de Freitas S. Stability Of A Black Eyed Pea Trypsin Chymotrypsin Inhibitor (BTCI). Protein Pept Lett. 2001;8: 33–38. doi: 10.2174/0929866013409715
31. Barbosa JARG, Teles RCL, Forrer VP, Guimarães BG, Medrano FJ, Ventura MM, et al. Crystallization, data collection and phasing of black-eyed pea trypsin/chymotrypsin inhibitor in complex with bovine β-trypsin. Acta Crystallogr—Sect D Biol Crystallogr. 2003;59: 1828–1830. doi: 10.1107/S090744490301641X 14501128
32. Barbosa JARG, Silva LP, Teles RCL, Esteves GF, Azevedo RB, Ventura MM, et al. Crystal Structure of the Bowman-Birk Inhibitor from Vigna unguiculata Seeds in Complex with β-Trypsin at 1.55 Å Resolution and Its Structural Properties in Association with Proteinases. Biophys J. 2007;92: 1638–1650. doi: 10.1529/biophysj.106.090555 17142290
33. Joanitti GA, Azevedo RB, Freitas SM. Apoptosis and lysosome membrane permeabilization induction on breast cancer cells by an anticarcinogenic Bowman-Birk protease inhibitor from Vigna unguiculata seeds. Cancer Lett. Elsevier Ireland Ltd; 2010;293: 73–81. doi: 10.1016/j.canlet.2009.12.017 20133052
34. Mehdad A, Brumana G, Souza A, Barbosa J, Ventura M, de Freitas S. A Bowman–Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition. Cell Death Discov. Nature Publishing Group; 2016;2: 1–10. doi: 10.1038/cddiscovery.2015.67 27551492
35. Wang J, Li X, Xia X, Li H, Liu J, Li QX, et al. Extraction, purification, and characterization of a trypsin inhibitor from cowpea seeds (Vigna unguiculata). Prep Biochem Biotechnol. 2014;44: 1–15. doi: 10.1080/10826068.2013.782041 24117148
36. Abd El-latif AO. Biopotency of serine protease inhibitors from cowpea (Vigna unguiculata) seeds on digestive proteases and the development of Spodoptera littoralis (Boisduval). Arch Insect Biochem Physiol. 2015;89: 1–17. doi: 10.1002/arch.21216 25524889
37. Prasad ER, Dutta-Gupta A, Padmasree K. Purification and characterization of a Bowman-Birk proteinase inhibitor from the seeds of black gram (Vigna mungo). Phytochemistry. Elsevier Ltd; 2010;71: 363–372. doi: 10.1016/j.phytochem.2009.11.006 20018332
38. Nozawa H, Yamagata H, Aizono Y, Yoshikawa M, Iwasaki T. The complete amino acid sequence of a subtilisin inhibitor from adzuki beans (Vigna angularis). J Biochem. 1989;106: 1003–8. doi: 10.1093/oxfordjournals.jbchem.a122955 2628417
39. Yoshikawa M, Yokota K, Hiraki K. Purification and some properties of a subtilisin inhibitor from adzuki beans. Agric Biol Chem. 1985;49: 367–371. doi: 10.1271/bbb1961.49.367
40. Kulkarni A, Rao M. Differential elicitation of an aspartic protease inhibitor: Regulation of endogenous protease and initial events in germination in seeds of Vigna radiata. Peptides. 2009;30: 2118–2126. doi: 10.1016/j.peptides.2009.08.024 19770015
41. Bradford M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. 1976;72: 248–254. doi: 10.1006/abio.1976.9999 942051
42. Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227: 680–685. doi: 10.1038/227680a0 5432063
43. Erlanger BF, Kokowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 1961;95: 271–278. doi: 10.1016/0003-9861(61)90145-x 13890599
44. Chase T, Shaw E. Comparison of the esterase activities of trypsin, plasmin, and thrombin on guanidinobenzoate esters. Titration of the enzymes. Biochemistry. 1969;8: 2212–2224. doi: 10.1021/bi00833a063 4239491
45. Morrison JF. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta—Enzymol. 1969;185: 269–286. doi: 10.1016/0005-2744(69)90420-3
46. Klupšaitė D, Juodeikienė G. Legume: composition, protein extraction and functional properties. A review. Chem Technol. 2015;66: 5–12. doi: 10.5755/j01.ct.66.1.12355
47. Chan CW, Phillips RD. Amino Acid Composition and Subunit Constitution of Protein Fractions from Cowpea (Vigna unguiculata L. Walp) Seeds. J Agric Food Chem. 1994;42: 1857–1860. doi: 10.1021/jf00045a005
48. Rao KN, Suresh CG. Bowman–Birk protease inhibitor from the seeds of Vigna unguiculata forms a highly stable dimeric structure. Biochim Biophys Acta—Proteins Proteomics. 2007;1774: 1264–1273. doi: 10.1016/j.bbapap.2007.07.009 17869196
49. Cruz-Silva I, Neuhof C, Gozzo AJ, Nunes VA, Hirata IY, Sampaio MU, et al. Using a Caesalpinia echinata Lam. protease inhibitor as a tool for studying the roles of neutrophil elastase, cathepsin G and proteinase 3 in pulmonary edema. Phytochemistry. Elsevier Ltd; 2013;96: 235–243. doi: 10.1016/j.phytochem.2013.09.025 24140156
50. de Oliveira C, Santana LA, Carmona AK, Cezari MH, Sampaio MU, Sampaio CAM, et al. Structure of cruzipain/cruzain inhibitors isolated from Bauhinia bauhinioides seeds. Biol Chem. 2001;382: 847–852. doi: 10.1515/BC.2001.103 11517940
51. Araújo APU, Hansen D, Vieira DF, Oliveira C de, Santana LA, Beltramini LM, et al. Kunitz-type Bauhinia bauhinioides inhibitors devoid of disulfide bridges: isolation of the cDNAs, heterologous expression and structural studies. Biol Chem. 2005;386: 561–568. doi: 10.1515/BC.2005.066 16006243
52. Klomklao S, Benjakul S, Kishimura H, Chaijan M. Extraction, purification and properties of trypsin inhibitor from Thai mung bean (Vigna radiata (L.) R. Wilczek). Food Chem. Elsevier Ltd; 2011;129: 1348–1354. doi: 10.1016/j.foodchem.2011.05.029
53. Cheung A, Wong J, Ng T. Trypsin-Chymotrypsin Inhibitors from Vigna mungo Seeds. Protein Pept Lett. 2009;16: 277–284. doi: 10.2174/092986609787601714 19275741
54. Schilling O, Overall CM. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol. 2008;26: 685–694. doi: 10.1038/nbt1408 18500335
55. Harris JL, Backes BJ, Leonetti F, Mahrus S, Ellman J a, Craik CS. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A. 2000;97: 7754–7759. doi: 10.1073/pnas.140132697 10869434
56. De Paola D, Blanco E, Pierri CL, Sonnante G. Isolation and characterization of novel variants of BBI coding genes from the legume Lathyrus sativus. Plant Physiol Biochem. Elsevier Masson SAS; 2012;57: 45–53. doi: 10.1016/j.plaphy.2012.05.001 22677449
57. Deshimaru M, Hanamoto R, Kusano C, Yoshimi S, Terada S. Purification and Characterization of Proteinase Inhibitors from Wild Soja (Glycine soja) Seeds. Biosci Biotechnol Biochem. 2002;66: 1897–1903. doi: 10.1271/bbb.66.1897 12400689
58. Nadaraja D, Weintraub ST, Hakala KW, Sherman NE, Starcher B. Isolation and partial sequence of a Kunitz-type elastase specific inhibitor from marama bean (Tylosema esculentum). J Enzym Inhib Med Chem. 2010;25: 377–382. doi: 10.3109/14756360903179500 19883219
59. Ragg EM, Galbusera V, Scarafoni A, Negri A, Tedeschi G, Consonni A, et al. Inhibitory properties and solution structure of a potent Bowman-Birk protease inhibitor from lentil (Lens culinaris, L) seeds. FEBS J. 2006;273: 4024–4039. doi: 10.1111/j.1742-4658.2006.05406.x 16889634
60. Esteves GF, Teles RCL, Cavalcante NS, Neves D, Ventura MM, Barbosa JARG, et al. Crystallization, data collection and processing of the chymotrypsin–BTCI–trypsin ternary complex. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63: 1087–1090. doi: 10.1107/S1744309107056424 18084102
61. Bendre AD, Ramasamy S, Suresh CG. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int J Biol Macromol. Elsevier B.V.; 2018;113: 933–943. doi: 10.1016/j.ijbiomac.2018.02.148 29499268
62. Marchetti S, Delledonne M, Fogher C, Chiabà C, Chiesa F, Savazzini F, et al. Soybean Kunitz, C-II and PI-IV inhibitor genes confer different levels of insect resistance to tobacco and potato transgenic plants. Theor Appl Genet. 2000;101: 519–526. doi: 10.1007/s001220051511
63. Jongsma MA, Bolter C. The adaptation of insects to plant protease inhibitors. J Insect Physiol. 1997;43: 885–895. doi: 10.1016/s0022-1910(97)00040-1 12770458
64. Mendoza-Blanco W, Casaretto JA. The serine protease inhibitors and plant-insect interaction. Idesia (Arica). 2012;30: 121–126. doi: 10.4067/S0718-34292012000100015
65. Martinez M, Santamaria ME, Diaz-Mendoza M, Arnaiz A, Carrillo L, Ortego F. Phytocystatins: Defense proteins against phytophagous insects and acari. Int J Mol Sci. 2016;17: 1–16. doi: 10.3390/ijms17101747 27775606
66. Kuwar SS, Pauchet Y, Vogel H, Heckel DG. Adaptive regulation of digestive serine proteases in the larval midgut of Helicoverpa armigera in response to a plant protease inhibitor. Insect Biochem Mol Biol. Elsevier Ltd; 2015;59: 18–29. doi: 10.1016/j.ibmb.2015.01.016 25662099
67. Silva CP, Terra WR, Lima RM. Differences in midgut serine proteinases from larvae of the bruchid beetles Callosobruchus maculatus and Zabrotes subfasciatus. Arch Insect Biochem Physiol. 2001;47: 18–28. doi: 10.1002/arch.1031 11317332
68. Churg A, Wright JL. Proteases and emphysema. Curr Opin Pulm Med. 2005;11: 153–159. doi: 10.1097/01.mcp.0000149592.51761.e3 15699789
69. Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis. 2008;12: 361–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/18371259 18371259
70. Pham CTN. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6: 541–550. doi: 10.1038/nri1841 16799473
71. Polverino E, Rosales-Mayor E, Dale GE, Dembowsky K, Torres A. The Role of Neutrophil Elastase Inhibitors in Lung Diseases. Chest. Elsevier Inc; 2017;152: 249–262. doi: 10.1016/j.chest.2017.03.056 28442313
72. Korkmaz B, Horwitz M, Jenne D, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 2010;62: 726–759. doi: 10.1124/pr.110.002733 21079042
73. Von Nussbaum F, Li VMJ. Neutrophil elastase inhibitors for the treatment of (cardio)pulmonary diseases: Into clinical testing with pre-adaptive pharmacophores. Bioorganic Med Chem Lett. Elsevier Ltd; 2015;25: 4370–4381. doi: 10.1016/j.bmcl.2015.08.049 26358162
74. Garcia-Touchard A, Henry TD, Sangiorgi G, Spagnoli LG, Mauriello A, Conover C, et al. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol. 2005;25: 1119–1127. doi: 10.1161/01.ATV.0000164311.48592.da 15802622
75. Henriksen PA, Sallenave JM. Human neutrophil elastase: Mediator and therapeutic target in atherosclerosis. Int J Biochem Cell Biol. 2008;40: 1095–1100. doi: 10.1016/j.biocel.2008.01.004 18289916
76. Delbosc S, Rouer M, Alsac JM, Louedec L, Philippe M, Meilhac O, et al. Elastase inhibitor AZD9668 treatment prevented progression of experimental abdominal aortic aneurysms. J Vasc Surg. Society for Vascular Surgery; 2016;63: 486–492.e1. doi: 10.1016/j.jvs.2014.07.102 25175632
77. Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol. Nature Publishing Group; 2016;12: 402–413. doi: 10.1038/nrneph.2016.71 27241241
78. Wang Z-Q. Effects of neutrophil elastase inhibitor in patients undergoing esophagectomy: A systematic review and meta-analysis. World J Gastroenterol. 2015;21: 3720. doi: 10.3748/wjg.v21.i12.3720 25834341
79. Kawabata K, Suzuki M, Sugitani M, Imaki K, Toda M, Miyamoto T. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem Biophys Res Commun. 1991;177: 814–820. doi: 10.1016/0006-291x(91)91862-7 2049103
80. Aikawa N, Ishizaka A, Hirasawa H, Shimazaki S, Yamamoto Y, Sugimoto H, et al. Reevaluation of the efficacy and safety of the neutrophil elastase inhibitor, Sivelestat, for the treatment of acute lung injury associated with systemic inflammatory response syndrome; a phase IV study. Pulm Pharmacol Ther. Elsevier Ltd; 2011;24: 549–554. doi: 10.1016/j.pupt.2011.03.001 21540122
81. Inoue Y, Tanaka H, Ogura H, Ukai I, Fujita K, Hosotsubo H, et al. A neutrophil elastase inhibitor, sivelestat, improves leukocyte deformability in patients with acute lung injury. J Trauma—Inj Infect Crit Care. 2006;60: 936–943. doi: 10.1097/01.ta.0000217271.25809.a0 16688053
82. Akamoto S, Okano K, Sano T, Yachida S, Izuishi K, Usuki H, et al. Neutrophil elastase inhibitor (sivelestat) preserves antitumor immunity and reduces the inflammatory mediators associated with major surgery. Surg Today. 2007;37: 359–365. doi: 10.1007/s00595-006-3409-0 17468814
83. Nomura N, Asano M, Saito T, Nakayama T, Mishima A. Sivelestat attenuates lung injury in surgery for congenital heart disease with pulmonary hypertension. Ann Thorac Surg. Elsevier Inc; 2013;96: 2184–2191. doi: 10.1016/j.athoracsur.2013.07.017 24075485
84. Kuna P, Jenkins M, O’Brien CD, Fahy WA. AZD9668, a neutrophil elastase inhibitor, plus ongoing budesonide/ formoterol in patients with COPD. Respir Med. Elsevier Ltd; 2012;106: 531–539. doi: 10.1016/j.rmed.2011.10.020 22197578
85. Stockley R, De Soyza A, Gunawardena K, Perrett J, Forsman-Semb K, Entwistle N, et al. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir Med. Elsevier Ltd; 2013;107: 524–533. doi: 10.1016/j.rmed.2012.12.009 23433769
86. Abusriwil H, Stockley RA. Alpha-1-antitrypsin replacement therapy: Current status. Curr Opin Pulm Med. 2006;12: 125–131. doi: 10.1097/01.mcp.0000208452.57854.c6 16456382
87. Pott GB, Chan ED, Dinarello CA, Shapiro L. α-1-Antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood. J Leukoc Biol. 2009;85: 886–895. doi: 10.1189/jlb.0208145 19197072
88. Tawara I, Sun Y, Lewis EC, Toubai T, Evers R, Nieves E, et al. Alpha-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proc Natl Acad Sci. 2012;109: 564–569. doi: 10.1073/pnas.1117665109 22203983
89. Chapman KR, Burdon JGW, Piitulainen E, Sandhaus RA, Seersholm N, Stocks JM, et al. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): A randomised, double-blind, placebo-controlled trial. Lancet. Elsevier Ltd; 2015;386: 360–368. doi: 10.1016/S0140-6736(15)60860-1 26026936
90. Gaggar A, Chen J, Chmiel JF, Dorkin HL, Flume PA, Griffin R, et al. Inhaled alpha1-proteinase inhibitor therapy in patients with cystic fibrosis. J Cyst Fibros. 2016;15: 227–233. doi: 10.1016/j.jcf.2015.07.009 26321218
91. Parr D, Lara B. Clinical utility of alpha-1 proteinase inhibitor in the management of adult patients with severe alpha-1 antitrypsin deficiency: a review of the current literature. Drug Des Devel Ther. 2017;Volume 11: 2149–2162. doi: 10.2147/DDDT.S105207 28769553
92. Shaw L, Wiedow O. Therapeutic potential of human elafin: Fig 1. Biochem Soc Trans. 2011;39: 1450–1454. doi: 10.1042/BST0391450 21936832
93. Zaidi SHE, Hui CC, Cheah AYL, You XM, Husain M, Rabinovitch M. Targeted overexpression of elafin protects mice against cardiac dysfunction and mortality following viral myocarditis. J Clin Invest. 1999;103: 1211–1219. doi: 10.1172/JCI5099 10207173
94. Batista IFC, Oliva ML V, Raujo MS, Sampaio MU, Richardson M, Fritz H, et al. Primary structure of a Kunitz-type trypsin inhibitor from Enterolobium contortisiliquum seeds. Phytochemistry. 1996;41: 1017–1022. doi: 10.1016/0031-9422(95)00710-5 8728712
95. Oliva ML V, Sampaio MU. Action of plant proteinase inhibitors on enzymes of physiopathological importance. An Acad Bras Cienc. 2009;81: 615–621. doi: 10.1590/S0001-37652010000200016 19722028
96. Theodoro-Júnior OA, Fraga Righetti R, Almeida-Reis R, Martins-Oliveira BT, Oliva LV, Prado CM, et al. A plant proteinase inhibitor from Enterolobium contortisiliquum attenuates pulmonary mechanics, inflammation and remodeling induced by elastase in mice. Int J Mol Sci. 2017;18. doi: 10.3390/ijms18020403 28216579
97. Oliva MLV, Sampaio MU. Bauhinia Kunitz-type proteinase inhibitors: Structural characteristics and biological properties. Biol Chem. 2008;389: 1007–1013. doi: 10.1515/BC.2008.119 18754727
98. Almeida-Reis R, Theodoro-Junior OA, Oliveira BTM, Oliva L V., Toledo-Arruda AC, Bonturi CR, et al. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice. Biomed Res Int. 2017;2017. doi: 10.1155/2017/8287125 28466019
99. Sasaki SD, Azzolini SSA, Hirata IY, Andreotti R, Tanaka AS. Boophilus microplus tick larvae, a rich source of Kunitz type serine proteinase inhibitors. Biochimie. 2004;86: 643–649. doi: 10.1016/j.biochi.2004.09.010 15556274
100. Tanaka AS, Andreotti R, Gomes A, Torquato RJ., Sampaio MU, Sampaio CA. A double headed serine proteinase inhibitor—human plasma kallikrein and elastase inhibitor—from Boophilus microplus larvae. Immunopharmacology. 1999;45: 171–177. doi: 10.1016/s0162-3109(99)00074-0 10615008
101. Sasaki SD, Tanaka AS. rBmTI-6, a Kunitz-BPTI domain protease inhibitor from the tick Boophilus microplus, its cloning, expression and biochemical characterization. 2008;155: 133–141. doi: 10.1016/j.vetpar.2008.03.031 18502587
102. Lourenço JD, Neves LP, Olivo CR, Duran A, Almeida FM. A Treatment with a Protease Inhibitor Recombinant from the Cattle Tick (Rhipicephalus Boophilus microplus) Ameliorates Emphysema in Mice. PLoS One. 2014;9: 1–9. doi: 10.1371/journal.pone.0098216 24886716
103. Lourenço JD, Ito JT, Cervilha DAB, Sales DS, Riani A, Suehiro CL, et al. The Tick-Derived rBmTI-A protease inhibitor attenuates the histological and functional changes induced by cigarette smoke exposure. Histol Histopathol. 2018;33: 289–298. doi: 10.14670/HH-11-927 28868604
104. Duran AFA, Neves L de P, da Silva FRS, Machado GC, Ferreira GC, Lourenço JD, et al. rBmTI-6 attenuates pathophysiological and inflammatory parameters of induced emphysema in mice. Int J Biol Macromol. Elsevier B.V.; 2018;111: 1214–1221. doi: 10.1016/j.ijbiomac.2018.01.066 29339284
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis