#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Characterization of Worldwide Olive Germplasm Banks of Marrakech (Morocco) and Córdoba (Spain): Towards management and use of olive germplasm in breeding programs


Autoři: Ahmed El Bakkali aff001;  Laila Essalouh aff002;  Christine Tollon aff002;  Ronan Rivallan aff002;  Pierre Mournet aff002;  Abdelmajid Moukhli aff004;  Hayat Zaher aff004;  Abderrahmane Mekkaoui aff001;  Amal Hadidou aff001;  Lhassane Sikaoui aff004;  Bouchaib Khadari aff002
Působiště autorů: INRA, UR Amélioration des Plantes et Conservation des Ressources Phyto-génétiques, Meknès, Morocco aff001;  AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France aff002;  EPLEFPA de Nîmes-CFPPA du Gard, Rodilhan, France aff003;  INRA, UR Amélioration des Plantes, Marrakech, Morocco aff004;  Conservatoire Botanique National Méditerranéen de Porquerolles (CBNMed), UMR AGAP, Montpellier, France aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223716

Souhrn

Olive (Olea europaea L.) is a major fruit crop in the Mediterranean Basin. Ex-situ olive management is essential to ensure optimal use of genetic resources in breeding programs. The Worldwide Olive Germplasm Bank of Córdoba (WOGBC), Spain, and Marrakech (WOGBM), Morocco, are currently the largest existing olive germplasm collections. Characterization, identification, comparison and authentication of all accessions in both collections could thus provide useful information for managing olive germplasm for its preservation, exchange within the scientific community and use in breeding programs. Here we applied 20 microsatellite markers (SSR) and 11 endocarp morphological traits to discriminate and authenticate 1091 olive accessions belonging to WOGBM and WOGBC (554 and 537, respectively). Of all the analyzed accessions, 672 distinct SSR profiles considered as unique genotypes were identified, but only 130 were present in both collections. Combining SSR markers and endocarp traits led to the identification of 535 cultivars (126 in common) and 120 authenticated cultivars. No significant differences were observed between collections regarding the allelic richness and diversity index. We concluded that the genetic diversity level was stable despite marked contrasts in varietal composition between collections, which could be explained by their different collection establishment conditions. This highlights the extent of cultivar variability within WOGBs. Moreover, we detected 192 mislabeling errors, 72 of which were found in WOGBM. A total of 228 genotypes as molecular variants of 74 cultivars, 79 synonyms and 39 homonyms as new cases were identified. Both collections were combined to define the nested core collections of 55, 121 and 150 sample sizes proposed for further studies. This study was a preliminary step towards managing and mining the genetic diversity in both collections while developing collaborations between olive research teams to conduct association mapping studies by exchanging and phenotyping accessions in contrasted environmental sites.

Klíčová slova:

Genetic loci – Alleles – Variant genotypes – Plant breeding – Microsatellite loci – Olives – Olive trees – Mediterranean Basin


Zdroje

1. Green PS. A revision of Olea L. (Oleaceae). Kew Bull. 2002;57: 91–140.

2. IOOC. International Olive Oil Council, 2018. http://www.internationaloliveoi.org/.

3. FAO. The Statistical Database (FAOSTAT). Food and Agriculture Organization of the United Nations (FAO), Rome. 2017. http://www.fao.org/faostat/en/#data.

4. Kaniewski D, Van Campo E, Boiy T, Terral JF, Khadari B, Besnard G. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidences from the middle east. Biol Rev Camb Philos Soc. 2012;87: 885–899. doi: 10.1111/j.1469-185X.2012.00229.x 22512893

5. Zohary D, Hopf M, Weiss E. Domestication of plants in the Old World: The origin and spread of cultivated plants in Southwest Asia, Europe, and the Mediterranean basin. Oxford, UK: Oxford University Press; 2012. doi: 10.1093/acprof:osobl/9780199549061.001.0001

6. Terral JF.La domestication de l’olivier (Olea europaea L.) en Méditerranée nord-occidentale: approche morphométrique et implications paléoclimatiques”, Ph.D. thesis, Université Montpellier II, Montpellier, France; 1997.

7. Besnard G, Breton C, Baradat P, Khadari B, Bervillé A. Cultivar identification in the olive (Olea europaea L.) based on RAPDs. J Am Soc Horti Sci. 2001;126: 668–675.

8. Breton CM, Terral JF, Pinatel C, Médail F, Bonhomme F, Bervillé A. The origins of the domestication of the olive tree. C R Biol. 2009;332(12): 1059–64. doi: 10.1016/j.crvi.2009.08.001 19931842

9. Besnard G, Khadari B, Navascués M, Fernández-Mazuecos M, El Bakkali A, Arrigo N, et al. The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B Biol Sci. 2013; 280(1756). https://doi.org/10.1098/rspb.2012.2833

10. Diez CM, Trujillo I, Martinez-Urdiroz N, Barranco D, Rallo L, Marfil P, et al. Olive domestication and diversification in the Mediterranean Basin. New Phytol. 2015;206: 436–447. doi: 10.1111/nph.13181 25420413

11. Bartolini G. Olive Germplasm (Olea europaea L.) (Cultivars, synonyms, cultivation area, collections, descriptors); 2008.

12. Bartolini G, Messeri C, Prevost G. Olive tree germplasm: descriptor lists of cultivated varieties in the world. Acta Hortic. 1994;356: 116–118.

13. Bartolini G, Prevost G, Messeri C, Carignani C. Olive germplasm: cultivars and world-wide collections. In: FAO SaPGRSo (ed) FAO; 2005.

14. Muzzalupo I, Vendramin GG, Chiappetta A. Genetic Biodiversity of Italian Olives (Olea europaea) Germplasm Analyzed by SSR Markers. Hindawi, Sci. World J. 2014. Article ID 296590, 12 pages. http://dx.doi.org/10.1155/2014/296590.

15. Kaya HB, Cetin O, Kaya H, Sahin M, Sefer F, Kahraman A, et al. SNP Discovery by Illumina-Based Transcriptome Sequencing of the Olive and the Genetic Characterization of Turkish Olive Genotypes Revealed by AFLP, SSR and SNP Markers. PLoS One. 2013;8(9): e73674. doi: 10.1371/journal.pone.0073674 24058483

16. Xanthopoulou A, Ganopoulos I, Koubouris G, Tsaftaris A, Sergendani C, Kalivas A, et al. Microsatellite high-resolution melting (SSR-HRM) analysis for genotyping and molecular characterization of an Olea europaea germplasm collection. Plant Genet Resour. 2014;12: 273–277.

17. Koehmstedt AM, Aradhya MK, Soleri D, Smith JL, Polito VS. Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Department of Agriculture. Genet. Resour. Crop Evol. 2011;58(4): 519–531.

18. Trentacoste ER, Puertas CM. Preliminary characterization and morpho-agronomic evaluation of the olive germplasm collection of the Mendoza province (Argentina). Euphytica. 2011;177: 99–109.

19. Belaj A, Dominguez-García MC, Atienza SG, Martín Urdíroz N, De la Rosa R, Satovic Z, et al. Developing a core collection of olive (Olea europaea L) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes. 2012;8: 365–378.

20. Díez CM, Imperato A, Rallo L, Barranco D, Trujillo I. Worldwide core collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci. 2012;52: 211–221.

21. Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, et al. Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet. Genomes. 2014;10(1): 141–155.

22. Haouane H, El Bakkali A, Moukhli A, Tollon C, Santoni S, Oukabli A, et al. Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of Mediterranean olive genetic resources. Genetica. 2011;139(9): 1083–94. doi: 10.1007/s10709-011-9608-7 21960415

23. El Bakkali A, Haouane H, Moukhli A, Costes E, Van Damme P, Khadari B. Construction of Core Collections Suitable for Association Mapping to Optimize Use of Mediterranean Olive (Olea europaea L.) Genetic Resources. PLoS ONE 2013;8(5): e61265. doi: 10.1371/journal.pone.0061265 23667437

24. Ponti L, Gutierrez AP, Ruti PM, Dell’Aquila A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. PNAS. 2014;111(15): 5598–5603. doi: 10.1073/pnas.1314437111 24706833

25. Giampetruzzi A, Morelli M, Saponari M, Loconsole G, Chiumenti M, Boscia D, et al. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. Pauca. BMC Genomics. 2016;17(475).

26. Barranco ND, Cimato A, Fiorino P, Rallo RL, Touzani A, Castañeda C, et al. World catalogue of olive varieties. IOC. 2000; Pages: 360.

27. Barranco D, Trujillo I, Rallo L. Elaiografía Hispanica. In: Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (eds) Variedades de olivo en España. Mundi-Prensa, Madrid; 2005.

28. Cipriani G, Marrazzo MT, Marconi R, Cimato A. Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet. 2002;104: 223–228. doi: 10.1007/s001220100685 12582690

29. Lopes MS, Mendoca D, Sefc KM, Sabino Gil F, Da Camara Machado A. Genetic evidence of intra-cultivar variability within Iberian olive cultivars. Hortic Sci. 2004;39: 1562–1565.

30. Khadari B, Charafi J, Moukhli A, Ater M. Substantial genetic diversity in cultivated Moroccan olive despite a single major variety: a paradoxical situation evidenced by the use of SSR loci. Tree Genet Genomes. 2008;4: 213–221.

31. Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet. 2010;121(8): 1569–1585. doi: 10.1007/s00122-010-1411-9 20689905

32. Achtak H, Ater M, Oukabli A, Santoni S, Kjellberg F and Khadari B. Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of Fig (Ficus carica L.) in Morocco. BMC Plant Biol. 2010;10: 28. http://dx.doi.org/10.1186/1471-2229-10-28 20167055

33. Evans KM, Patocchi A, Rezzonico F, Mathis F, Durel CE, Fernández-Fernández F, et al. Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol. Breed. 2011;28: 535–554.

34. Del Río C, Caballero JM. Preliminary agronomical characterization of 131 cultivars introduced in the olive germplasm bank of Córdoba in March 1987. Acta Hort. 1994;356: 110–115.

35. Bartolini S, Minnocci A, Vitagliano C. Morphological studies on pollen in some clones of olive cv. "Leccino". Agricoltura Mediterranea. 1992;122: 282–286.

36. Cantini C, Cimato A, Sani G. Morphological evaluation of olive germplasm present in Tuscany region. Euphytica.1999;109(3): 173–181.

37. Bartolini G, Petruccelli R. Classification, origin, diffusion and history of the olive. FAO press, Rome; 2002.

38. Blazakis KN, Kosma M, Kostelenos G, Baldoni L, Bufacchi M, Kalaitzis P. Description of olive morphological parameters by using open access software. Plant Methods. 2017;13: 111. doi: 10.1186/s13007-017-0261-8 29238398

39. Barone E, Di Marco L, Motisi A, Caruso T. The Sicilian olive germplasm and its characterisation by using statistical methods. Acta Hort. 1994;356: 66–69.

40. Taamalli W, Geuna F, Banfi R, Bassi D, Daoud D, Zarrouk M (2006) Agronomic and molecular analyses for the characterisation of accessions in Tunisian olive germplasm collections. Electronic J Biotechnol. 2006;9(5): 468–481. doi: 10.2225/vol9-issue5-fulltext-12

41. Barranco D, Trujillo I, Rallo L. Are ‘Oblonga’ and ‘Frantoio’ the same cultivar? HortScience. 2000;35: 1323–1325.

42. Caballero JM, Del Rıo C, Barranco D, Trujillo I. The olive world germplasm of Cordoba, Spain. Olea. 2006;25: 14–19.

43. Ouazzani N, Lumaret R, Villemur P, Di Giusto F (1993) Leaf Allozyme Variation in Cultivated and Wild Olive Trees (Olea europaea L.). J Hered. 1993;84. https://doi.org/10.1093/oxfordjournals.jhered.a111274.

44. Trujillo I, Rallo L, Arus P. Identifying olive cultivars by isozyme analysis. J Amer Soc Hort Sci. 1995;120: 318–324.

45. Besnard G, Bervillé A (2002) On chloroplast DNA variations in the olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms. Theor Appl Genet. 2002;104(6–7): 1157–1163. doi: 10.1007/s00122-001-0834-8 12582626

46. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, et al. Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet. 2003;107: 736–744. doi: 10.1007/s00122-003-1301-5 12819908

47. Khadari B, Breton C, Moutier N, Roger JP, Besnard G, et al. The use of molecular markers for germplasm management in French olive collection. Theor Appl Genet. 2003;106: 521–529. doi: 10.1007/s00122-002-1079-x 12589553

48. Gemas VJV, Almadanim MC, Tenreiro R, Martins A, Fevereiro P. Genetic diversity in the Olive tree (Olea europaea L. subsp. europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Genet Resour Crop Evol. 2004;51: 501–511.

49. Brake M, Migdadi H, Al-Gharaibeh M, Ayoub S, Haddad N, El Oqlah A. Characterization of Jordanian olive cultivars (Olea europaea L.) using RAPD and ISSR molecular markers. Sci Hortic. 2014;176: 282–289.

50. Angiolillo A, Mencuccini L, Baldoni L. Olive genetic diversity assessed using Amplified Fragment Lenght Polymorphism. Theor Appl Genet. 1999;98: 411–421.

51. Sarri V, Baldoni L, Porceddu A, Cultrera NGM, Contento A, Frediani M, et al. Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome. 2006;49: 1606–1615. doi: 10.1139/g06-126 17426775

52. Baldoni L, Cultrera NG, Mariotti R, Ricciolini C, Arcioni S, et al. A consensus list of microsatellite markers for olive genotyping. Mol Breed. 2009;24: 213–231.

53. Marra FP, Caruso T, Costa F, Di Vaio C, Mafrica R, Marchese A. Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Genet. Genomes. 2013; 9: 961–973. doi: 10.1007/s11295-013-0609-9

54. Di Rienzo V, Sion S, Taranto F, D’Agostino M, Montemurro C, Fanelli V, et al. Genetic flow among olive populations within the Mediterranean basin. PeerJ. 2018; 6:e5260. https://doi.org/10.7717/peerj.5260 30018865

55. Boucheffa S, Miazzi MM, di Rienzo V, Mangini G, Fanelli V, Tamendjari A, et al. The coexistence of oleaster and traditional varieties affects genetic diversity and population structure in Algerian olive (Olea europaea) germplasm. Genet Resourc Crop Evol. 2017;64(2): 379–390.

56. Reale S, Doveri S, Díaz A, Angiolillo A, Lucentini L, Pilla F, et al. SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome. 2006;49: 1193–205. doi: 10.1139/g06-068 17110999

57. D’Agostino N, Taranto F, Camposeo S, Mangini G, Fanelli V, Gadaleta S, et al. GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Scientific Rep. 2018;8,15877: 1–13. https://doi.org/10.1038/s41598-018-34207-y.

58. Taranto F, D’Agostino N, Pavan S, Fanelli V, di Rienzo V, Sabetta W, et al. SNP diversity in an olive germplasm collection. Acta Hortic. 2018;1199: 27–32.

59. Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben M, Cano E, et al. Genome sequence of the olive tree, Olea europaea. GigaScience 2016;5: 29. https://doi.org/10.1186/s13742-016-0134-5 27346392

60. Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, et al. Genome of wild olive and the evolution of oil biosynthesis. PNAS. 2017;31, 114(44): E9413–E9422. doi: 10.1073/pnas.1708621114 29078332

61. Essalouh L, Zine El Aabidine A, Contreras S, Ben Sadok I, Santoni S, Khadari B, et al. Genomic and EST microsatellite loci development and use in olive: Molecular tools for genetic mapping and association studies. Acta Hortic. 2014;1057: 543–549. doi: 10.17660/ActaHortic.2014.1057.69

62. Mariotti R, Cultrera NGM, Mousavi S, Baglivo F, Rossi M, Albertini E, et al. Development, evaluation, and validation of new EST-SSR markers in olive (Olea europaea L.). Tree Genet Genomes 2016;12: 120. doi: 10.1007/s11295-016-1077-9

63. Mousavi S, Mariotti R, Regni L, Nasini L, Bufacchi M, Pandolfi S, et al. The First Molecular Identification of an Olive Collection Applying Standard Simple Sequence Repeats and Novel Expressed Sequence Tag Markers. Front Plant Sci. 2017;8: 1283. doi: 10.3389/fpls.2017.01283 28769972

64. Muzzalupo I, Salimonti A, Caravita MA, Pellegrino M, Perri E. SSR markers for characterization and identification of cultivars of Olea europaea L. in the Abruzzo and Molise regions in south-central Italy. Adv Hortic Sci. 2008;22(2): 129–135.

65. Gao H, Cai S, Yan B, Chen B, Yu F. Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes. Biol Res. 2009;42: 365–375. 19915745

66. Weeks DE, Conley YP, Ferrell RE, Mah TS, Gorin MB. A tale of two genotypes: consistency between two high throughput genotyping centres. Genome Res. 2002;12: 430–435. doi: 10.1101/gr.211502 11875031

67. Las Casas G, Scollo F, Distefano G, Continella A, Gentile A, La Malfa S. Molecular characterization of olive (Olea europaea L.) Sicilian cultivars using SSR markers. Biochem Syst Ecol. 2014;57: 15–19. doi: 10.1016/j.bse.2014.07.010

68. Sefc KM, Lopes MS, Mendonça D, Rodrigues Dos Santos M, Da Cámara Machado L. Identification of microsatellites loci in Olive (Olea europaea L.) and their characterization in Italian and Iberian trees. Mol Ecol. 2000;9: 1171–1193. doi: 10.1046/j.1365-294x.2000.00954.x 10964237

69. Carriero F, Fontanazza G, Cellini F, Giorio G. Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet. 2002;104: 301–307. doi: 10.1007/s001220100691 12582701

70. La Rosa R, James CM, Tobutt KR. Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Mol Ecol Notes. 2002;2(3): 265–267.

71. Park SDE. Microsatellite Toolkit 3.1.1; 2001. http://animalgenomics.ucd.ie/sdepark/ms-toolkit/.

72. Nei M. Molecular Evolutionary Genetics. Columbia University Press: New York; 1987.

73. Botstein D, White R, Skolnick M, Davis R. Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Amer J Hum Genet. 1980;32: 314–331. 6247908

74. Pritchard JK, Stephens M, Donnelly P. Inference of population structure from multilocus genotype data. Genetics. 2000;155: 945–959. 10835412

75. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software Structure, a simulation study. Mol Ecol. 2005;14: 2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x 15969739

76. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna; 2016.

77. Jakobsson M, Rosenberg NA. Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinform. 2007;23: 1801–1806.

78. Perrier X, Flori A, Bonnot F. Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann J C. Ed., Genetic diversity of cultivated tropical plants. Enfield, Science Publishers. Montpellier; 2003. 43–76.

79. Sokal R, Michener C. A statistical method for evaluating systematic relationships. The University of Kansas. In: Sci bull. 1958; 38(22).

80. Dice LR. Measures of the amount of ecologic association between species. Ecol. 1945;26: 297–302.

81. Rohlf FJ. NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 2.00. Exeter Software. Setauket, New York; 1998.

82. Smouse PE, Peakall R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity. 1999; 82: 561–73. doi: 10.1038/sj.hdy.6885180 10383677

83. Peakall R, Smouse PE (2006) genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1): 288–295.

84. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol. 1998;12: 844–855. https://doi.org/10.1111/j.1523-1739.1998.96489.x.

85. Szpiech ZA, Jakobsson M, Rosenberg NA. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinform. 2008;24: 2498–2504.

86. Hammer Ø, Harper DAT, Ryan PD. Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4: 9pp.

87. Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL. Mstrat: An algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered. 2001;92: 93–94. doi: 10.1093/jhered/92.1.93 11336240

88. Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport GF. CoreHunter: an algorithm for sampling genetic resources based on multiple genetics measures. Bioinform. 2009;10: 243.

89. Schoen DJ, Brown AHD. Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. PNAS. 1993;90: 10623–10627. doi: 10.1073/pnas.90.22.10623 8248153

90. D’Imperio M, Viscosi V, Scarano MT, D’Andrea M, Zulo BA, Pilla F. Integration between molecular and morphological markers for the exploitation of olive germoplasm (Olea europaea). SciHortic. 2001;130: 229–240.

91. Fendri M, Trujillo I, Trigui A, Rodriguez-Garcia MI, Ramirez JDA. Simple sequence repeat identification and endocarp characterization of olive tree accessions in a Tunisian germplasm collection. Hortscience. 2010;45: 1429–1436.

92. Terral JF, Alonso N, Capdevila RB, Chatti N, Fabre L, Fiorentino G, et al. Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material, J Biogeogr. 2004;31: 63–77.

93. Hannachi H, Martín Gómez JJ, Saadaoui E, Cervantes E. Stone diversity in wild and cultivated olive trees (Olea europaea L.). Dendrobiol. 2017;77: 19–32.

94. Baali-Cherif D and Besnard G. High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar Algeria. Ann Bot. 2005;96: 823–830. doi: 10.1093/aob/mci232 16043438

95. Ibanez J, Velez MD, De Andres MT and Borrego J. Molecular markers for establishing distinctness in vegetatively propagated crops: a case study in grapevine. Theor Appl Genet. 2009;119: 1214–1222.

96. Charafi J, El Meziane A, Moukhli A, Boulouha B, El Modafar C, Khadari B. Menara gardens: a Moroccan olive germplasm collection identified by SSR locus genetic study. Genet Resour Crop Evol. 2007;55: 893–900.

97. Belaj A, Rallo L, Trujillo I. Using RAPD and AFLP Markers to Distinguish Individuals Obtained by Clonal Selection of ‘Arbequina’ and ‘Manzanilla de Sevilla’ Olive. HortScience. 2004;39(7): 1566–1570.

98. Ipek A, Barut E, Gulen H, Ipek M. Assessment of inter- and intra-cultivar variations in olive using SSR markers. Sci agric. 2012;69(5): 327–335.

99. Muzzalupo I, Chiappetta A, Benincasa C, Perri E. Intra-cultivar variability of three major olive cultivars grown in different areas of central-southern Italy and studied using microsatellite markers. Sci Hortic. 2010;126: 324–329.

100. Kruglyak S, Durret RT, Schug M, Aquadro CF. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. PNAS. 1998;95: 10774–10778. 9724780

101. Bachtrog D, Agis M, Imhof M, Schlotterer C. Microsatellite variability differs between dinucleotide repeat Motifs–evidence from Drosophila melanogaster. Mol Biol Evol. 2000;17: 1277–1285. doi: 10.1093/oxfordjournals.molbev.a026411 10958844

102. Soleri D, Koehmstedt A, Aradhya MK, Polito V, Pinney K. Comparing the historic olive trees (Olea europaea L.) of Santa Cruz Island with contemporaneous trees in the Santa Barbara, CA area: a case study of diversity and structure in an introduced agricultural species conserved in situ. Genet Resour Crop Evol. 2010;57: 973–984.

103. Boucheffa S, Tamendjari A, Sanchez-Gimeno AC, Rovellini P, Venturini S, di Rienzo V, et al. Diversity Assessment of Algerian Wild and Cultivated Olives (Olea europeae L.) by Molecular, Morphological, and Chemical Traits. Eur J Lipid Sci Technol. 2019;121(1), 1800302. doi: 10.1002/ejlt.201800302

104. Cimato A, Cantini C, Sani G. L’olivo in Toscana: il germoplasme autoctono. Istituto sulla propagazione delle specie legnose, CNR: ARSIA; 2001: 217pp.

105. Rafalski JA. Association genetics in crop improvement. Curr Opinion Plant Biol. 2010;13: 174–180.

106. Kaya HB, Cetin O, Kaya HS, Sahin M, Sefer F, Tanyolac B. Association Mapping in Turkish Olive Cultivars Revealed Significant Markers Related to Some Important Agronomic Traits. Biochem Genet. 2016;54(4): 506–533. doi: 10.1007/s10528-016-9738-9 27209034

107. İpek A, Yılmaz K, Sıkıcı P, Tangu NA, Öz AT, Bayraktar M, et al. SNP Discovery by GBS in Olive and the Construction of a High-Density Genetic Linkage Map. Biochem Genet. 2016;54(3): 313–25. doi: 10.1007/s10528-016-9721-5 26902470

108. İpek A, İpek M, Ercişli S, Tangu NA. Transcriptome-based SNP discovery by GBS and the construction of a genetic map for olive. Funct Integr Genomics. 2017;17(5): 493–501. doi: 10.1007/s10142-017-0552-1 28213629


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#