Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides
Autoři:
Kimia Kardani aff001; Atieh Hashemi aff001; Azam Bolhassani aff002
Působiště autorů:
Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
aff001; Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223844
Souhrn
To develop an effective therapeutic vaccine against HIV-1, prediction of the most conserved epitopes derived from major proteins using bioinformatics tools is an alternative achievement. The epitope-driven vaccines against variable pathogens represented successful results. Hence, to overcome this hyper-variable virus, we designed the highly conserved and immunodominant peptide epitopes. Two servers were used to predict peptide-MHC-I binding affinity including NetMHCpan4.0 and Syfpeithi servers. The NetMHCIIpan3.2 server was utilized for MHC-II binding affinity. Then, we determined immunogenicity scores and allergenicity by the IEDB immunogenicity predictor and Algpred, respectively. Next, for estimation of toxicity and population coverage, ToxinPred server and IEDB population coverage tool were applied. After that, the MHC-peptide binding was investigated by GalexyPepDock peptide-protein flexible docking server. Finally, two different DNA and peptide constructs containing Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 were prepared and complexed with four various cell penetrating peptides (CPPs) for delivery into mammalian cells (MPG and HR9 CPPs for DNA delivery, and CyLoP-1 and LDP-NLS CPPs for protein delivery). Our results indicated that the designed DNA and peptide constructs could form non-covalent stable nanoparticles at certain ratios as observed by scanning electron microscope (SEM) and Zetasizer. The flow cytometry results obtained from in vitro transfection of the nanoparticles into HEK-293T cell lines showed that the percentage of GFP expressing cells was about 38.38 ± 1.34%, 25.36% ± 0.30, 54.95% ± 0.84, and 25.11% ± 0.36 for MPG/pEGFP-nef-vif-gp160-p24, MPG/pEGFP-nef-vpu-gp160-p24, HR9/pEGFP-nef-vif-gp160-p24 and HR9/pEGFP-nef-vpu-gp160-p24, respectively. Thus, these data showed that the DNA construct harboring nef-vif-gp160-p24 multi-epitope gene had higher efficiency than the DNA construct harboring nef-vpu-gp160-p24 multi-epitope gene to penetrate into the cells. Moreover, delivery of the recombinant Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 polyepitope peptides in HEK-293T cells was confirmed as a single band about 32 kDa using western blot analysis. Although, both DNA and peptide constructs could be successfully transported by a variety of CPPs into the cells, but the difference between them in transfection rate will influence the levels of immune responses for development of therapeutic vaccines.
Klíčová slova:
Immune response – T cells – HIV-1 – Nanoparticles – Antigens – Vaccine development – Major histocompatibility complex – Antigen presentation
Zdroje
1. Tissot AC, Renhofa R, Schmitz N, Cielens I, Meijerink E, Ose V, Jennings GT, Saudan P, Pumpens P, Bachmann MF. Versatile virus-like particle carrier for epitope based vaccines. PLoS One. 2010; 5(3).
2. Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nature reviews Drug discovery. 2007; 6(5): 404. doi: 10.1038/nrd2224 17473845
3. Frey BF, Jiang J, Sui Y, Boyd LF, Yu B, Tatsuno G, Billeskov R, Solaymani-Mohammadi S, Berman PW, Margulies DH, Berzofsky JA. Effects of cross-presentation, antigen processing, and peptide binding in HIV evasion of T cell immunity. The Journal of Immunology. 2018; 200(5):1853–1864. doi: 10.4049/jimmunol.1701523 29374075
4. Gao Y, McKay P, Mann J. Advances in HIV-1 vaccine development. Viruses. 2018; 10(4): 167.
5. Haleyur Giri Setty MK, Kurdekar A, Mahtani P, Liu J, Hewlett IK. Cross-subtype detection of HIV-1 capsid p24 antigen using a sensitive europium nanoparticle assay. AIDS research and human retroviruses. 2019.
6. Elhassan RM, Alsony NM, Othman KM, Izz-Aldin DT, Alhaj TA, Ali AA, Abashir LA, Ahmed OH, Hassan MA. Computational vaccinology approach: Designing an efficient multi-epitope peptide vaccine against Cryptococcus neoformans var. grubii heat shock 70 KDa protein. BioRxiv. 2019; 1: 534008
7. Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 2013; 8(3): 360–376. doi: 10.1002/cmdc.201200487 23316023
8. Schubert B, Lund O, Nielsen M. Evaluation of peptide selection approaches for epitope-based vaccine design. Tissue Antigens. 2013; 82(4): 243–251. 24461003
9. Belnoue E, Di Berardino-Besson W, Gaertner H, Carboni S, Dunand-Sauthier I, Cerini F, Suso-Inderberg EM, Wälchli S, König S, Salazar AM, Hartley O. Enhancing antitumor immune responses by optimized combinations of cell-penetrating peptide-based vaccines and adjuvants. Molecular Therapy. 2016; 24(9): 1675–1685. doi: 10.1038/mt.2016.134 27377043
10. Brooks NA, Pouniotis DS, Tang CK, Apostolopoulos V, Pietersz GA. Cell-penetrating peptides: application in vaccine delivery. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2010; 1805(1): 25–34.
11. Doan T, Herd K, Ramshaw I, Thomson S, Tindle RW. A polytope DNA vaccine elicits multiple effector and memory CTL responses and protects against human papillomavirus 16 E7-expressing tumour. Cancer Immunology, Immunotherapy. 2005; 54(2): 157–171. doi: 10.1007/s00262-004-0544-6 15480657
12. Yasmin T, Akter S, Debnath M, Ebihara A, Nakagawa T, Nabi AN. In silico proposition to predict cluster of B-and T-cell epitopes for the usefulness of vaccine design from invasive, virulent and membrane associated proteins of C. jejuni. In silico Pharmacology. 2016; 4(1): 5. doi: 10.1186/s40203-016-0020-y 27376537
13. Yang X, Yu X. An introduction to epitope prediction methods and software. Reviews in Medical Virology. 2009; 19(2): 77–96. doi: 10.1002/rmv.602 19101924
14. Frankel AD, Young JA. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem. 1998; 67: 1–25. doi: 10.1146/annurev.biochem.67.1.1 9759480
15. Berthet Colominas C, Monaco S, Novelli A, Sibaï G, Mallet F, Cusack S. Head to tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. The EMBO Journal. 1999; 18(5): 1124–1136. doi: 10.1093/emboj/18.5.1124 10064580
16. Goncalves J, Silva F, Freitas-Vieira A, Santa-Marta M, Malhó R, Yang X, Gabuzda D, Barbas C. Functional neutralization of HIV-1 Vif protein by intracellular immunization inhibits reverse transcription and viral replication. Journal of Biological Chemistry. 2002; 277(35): 32036–32045. doi: 10.1074/jbc.M201906200 12039955
17. Quaranta MG, Mattioli B, Giordani L, Viora M. Immunoregulatory effects of HIV-1 Nef protein. Biofactors. 2009; 35(2): 169–174. doi: 10.1002/biof.28 19449444
18. Willey RL, Maldarelli F, Martin MA, Strebel K. Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. Journal of Virology. 1992; 66(1): 226–234. 1727486
19. Dakappagari NK, Sundaram R, Rawale S, Liner A, Galloway DR, Kaumaya PT. Intracellular delivery of a novel multiepitope peptide vaccine by an amphipathic peptide carrier enhances cytotoxic T-cell responses in HLA-A* 201 mice. The Journal of Peptide Research. 2005; 65(2):189–199. doi: 10.1111/j.1399-3011.2005.00212.x 15705163
20. Bolhassani A, Kardani K, Vahabpour R, Habibzadeh N, Aghasadeghi MR, Sadat SM, Agi E. Prime/boost immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. Immunology Letters. 2015; 168(2): 366–373. doi: 10.1016/j.imlet.2015.10.012 26518142
21. Liu BR, Huang YW, Winiarz JG, Chiang HJ, Lee HJ. Intracellular delivery of quantum dots mediated by a histidine-and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism. Biomaterials. 2011; 32(13): 3520–3537. doi: 10.1016/j.biomaterials.2011.01.041 21329975
22. Bolhassani A, Jafarzade BS, Mardani G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides. 2017; 87: 50–63. doi: 10.1016/j.peptides.2016.11.011 27887988
23. Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. Journal of Controlled Release. 2014; 174: 126–136. doi: 10.1016/j.jconrel.2013.11.020 24291335
24. Morris MC, Deshayes S, Heitz F, Divita G. Cell penetrating peptides: from molecular mechanisms to therapeutics. Biology of the Cell. 2008; 100(4): 201–217. doi: 10.1042/BC20070116 18341479
25. Liu BR, Lin MD, Chiang HJ, Lee HJ. Arginine-rich cell-penetrating peptides deliver gene into living human cells. Gene. 2012; 505(1): 37–45. doi: 10.1016/j.gene.2012.05.053 22669044
26. Ponnappan N, Budagavi DP, Chugh A. CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2017; 1859(2):167–176.
27. Ponnappan N, Chugh A. Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. European Journal of Pharmaceutics and Biopharmaceutics. 2017; 114:145–153. doi: 10.1016/j.ejpb.2017.01.012 28159722
28. Khairkhah N, Namvar A, Kardani K, Bolhassani A. Prediction of cross-clade HIV-1 T cell epitopes using immunoinformatics analysis. Proteins: Structure, Function, and Bioinformatics. 2018; 86(12):1284–1293.
29. Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z. A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. PloS one. 2018; 13(10): e0205933. doi: 10.1371/journal.pone.0205933 30356257
30. Moret I, Peris JE, Guillem VM, Benet M, Revert F, Dasí F, Crespo A, Aliño SF. Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. Journal of Controlled Release. 2001; 76(1–2): 169–181. doi: 10.1016/s0168-3659(01)00415-1 11532322
31. Saleh T, Bolhassani A, Shojaosadati SA, Aghasadeghi MR. MPG-based nanoparticle: An efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine. 2015; 33(28): 3164–3170. doi: 10.1016/j.vaccine.2015.05.015 26001433
32. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, Kloetzel PM, Rammensee HG, Schild H, Holzhütter HG. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cellular and Molecular Life Sciences CMLS. 2005; 62(9):1025–1037. doi: 10.1007/s00018-005-4528-2 15868101
33. Abdoli A, Radmehr N, Bolhassani A, Eidi A, Mehrbod P, Motevalli F, Kianmehr Z, Chiani M, Mahdavi M, Yazdani S, Ardestani MS. Conjugated anionic PEG-citrate G2 dendrimer with multi-epitopic HIV-1 vaccine candidate enhance the cellular immune responses in mice. Artificial cells, nanomedicine, and biotechnology. 2017; 45(8):1762–1768. doi: 10.1080/21691401.2017.1290642 28278580
34. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. Journal of Biomedical Informatics. 2015; 53: 405–414. doi: 10.1016/j.jbi.2014.11.003 25464113
35. Létourneau S, Im EJ, Mashishi T, Brereton C, Bridgeman A, Yang H, Dorrell L, Dong T, Korber B, McMichael AJ, Hanke T. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PloS one. 2007; 2(10): e984. doi: 10.1371/annotation/fca26a4f-42c1-4772-a19e-aa9d96c4eeb2 17912361
36. Wilson CC, Newman MJ, Livingston BD, MaWhinney S, Forster JE, Scott J, Schooley RT, Benson CA. Clinical phase 1 testing of the safety and immunogenicity of an epitope-based DNA vaccine in human immunodeficiency virus type 1-infected subjects receiving highly active antiretroviral therapy. Clin Vaccine Immunol. 2008; 15(6): 986–994. doi: 10.1128/CVI.00492-07 18400976
37. Li F, Finnefrock AC, Dubey SA, Korber BT, Szinger J, Cole S, McElrath MJ, Shiver JW, Casimiro DR, Corey L, Self SG. Mapping HIV-1 vaccine induced T-cell responses: bias towards less-conserved regions and potential impact on vaccine efficacy in the step study. PloS one. 2011; 6(6): e20479. doi: 10.1371/journal.pone.0020479 21695251
38. Wilson CC, McKinney D, Anders M, MaWhinney S, Forster J, Crimi C, Southwood S, Sette A, Chesnut R, Newman MJ, Livingston BD. Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1. The Journal of Immunology. 2003; 171(10): 5611–5623. doi: 10.4049/jimmunol.171.10.5611 14607970
39. Watanabe K, Murakoshi H, Tamura Y, Koyanagi M, Chikata T, Gatanaga H, Oka S, Takiguchi M. Identification of cross-clade CTL epitopes in HIV-1 clade A/E-infected individuals by using the clade B overlapping peptides. Microbes and Infection. 2013; 15(13): 874–886. doi: 10.1016/j.micinf.2013.08.002 23968885
40. Murakoshi H, Zou C, Kuse N, Akahoshi T, Chikata T, Gatanaga H, Oka S, Hanke T, Takiguchi M. CD8+ T cells specific for conserved, cross-reactive Gag epitopes with strong ability to suppress HIV-1 replication. Retrovirology. 2018; 15(1): 46. doi: 10.1186/s12977-018-0429-y 29970102
41. Murakoshi H, Akahoshi T, Koyanagi M, Chikata T, Naruto T, Maruyama R, Tamura Y, Ishizuka N, Gatanaga H, Oka S, Takiguchi M. Clinical control of HIV-1 by cytotoxic T cells specific for multiple conserved epitopes. Journal of Virology. 2015; 89(10): 5330–5339. doi: 10.1128/JVI.00020-15 25741000
42. Herschhorn A, Marasco WA, Hizi A. Antibodies and lentiviruses that specifically recognize a T cell epitope derived from HIV-1 Nef protein and presented by HLA-C. The Journal of Immunology. 2010; 185(12):7623–7632. doi: 10.4049/jimmunol.1001561 21076072
43. De Groot AS, Jesdale B, Martin W, Saint Aubin C, Sbai H, Bosma A, Lieberman J, Skowron G, Mansourati F, Mayer KH. Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach. Vaccine. 2003; 21(27–30): 4486–4504. doi: 10.1016/s0264-410x(03)00390-6 14505932
44. De Groot AS, Martin W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clinical Immunology. 2009; 131(2): 189–201. doi: 10.1016/j.clim.2009.01.009 19269256
45. Milani A, Bolhassani A, Shahbazi S, Motevalli F, Sadat SM, Soleymani S. Small heat shock protein 27: An effective adjuvant for enhancement of HIV-1 Nef antigen-specific immunity. Immunology Letters. 2017; 191: 16–22. doi: 10.1016/j.imlet.2017.09.005 28917624
46. Krupka M, Zachova K, Cahlikova R, Vrbkova J, Novak Z, Sebela M, Weigl E, Raska M. Endotoxin-minimized HIV-1 p24 fused to murine hsp70 activates dendritic cells, facilitates endocytosis and p24-specific Th1 response in mice. Immunology Letters. 2015; 166(1): 36–44. doi: 10.1016/j.imlet.2015.05.010 26021827
47. Fomsgaard A, Karlsson I, Gram G, Schou C, Tang S, Bang P, Kromann I, Andersen P, Andreasen LV. Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine. 2011; 29(40):7067–7074. doi: 10.1016/j.vaccine.2011.07.025 21767590
48. De Groot AS, Rivera DS, McMurry JA, Buus S, Martin W. Identification of immunogenic HLA-B7 “Achilles’ heel” epitopes within highly conserved regions of HIV. Vaccine. 2008; 26(24): 3059–3071. doi: 10.1016/j.vaccine.2007.12.004 18206276
49. Du J, Wu X, Long F, Wen J, Hao W, Chen R, Kong X, Qian M, Jiang W. Improvement in efficacy of DNA vaccine encoding HIV-1 Vif by LIGHT gene adjuvant. Viral Immunology. 2013; 26(1): 68–74. doi: 10.1089/vim.2012.0073 23330678
50. Chakraborty S, Rahman T, Chakravorty R. Characterization of the protective HIV-1 CTL epitopes and the corresponding HLA class I alleles: a step towards designing CTL based HIV-1 vaccine. Advances in Virology. 2014; 2014.
51. Mudd PA, Martins MA, Ericsen AJ, Tully DC, Power KA, Bean AT, Piaskowski SM, Duan L, Seese A, Gladden AD, Weisgrau KL. Vaccine-induced CD8+ T cells control AIDS virus replication. Nature. 2012; 491(7422): 129. doi: 10.1038/nature11443 23023123
52. Tarosso LF, Sauer MM, Sanabani S, Giret MT, Tomiyama HI, Sidney J, Piaskowski SM, Diaz RS, Sabino EC, Sette A, Kalil-Filho J. Unexpected diversity of cellular immune responses against Nef and Vif in HIV-1-infected patients who spontaneously control viral replication. PLoS One. 2010; 5(7): e11436. doi: 10.1371/journal.pone.0011436 20625436
53. Melief CJ, Van Der Burg SH. Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines. Nature Reviews Cancer. 2008; 8(5): 351. doi: 10.1038/nrc2373 18418403
54. Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chemical Science. 2016; 7(2):842–854. doi: 10.1039/c5sc03892h 28791117
55. Jorritsma SH, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016; 34(46): 5488–5494 doi: 10.1016/j.vaccine.2016.09.062 27742218
56. Deshayes S, Morris M, Heitz F, Divita G. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Advanced Drug Delivery Reviews. 2008; 60(4–5): 537–547. doi: 10.1016/j.addr.2007.09.005 18037526
57. Morris MC, Chaloin L, Méry J, Heitz F, Divita G. A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Research. 1999; 27(17): 3510–3517. doi: 10.1093/nar/27.17.3510 10446241
58. Liu BR, Chen HH, Chan MH, Huang YW, Aronstam RS, Lee HJ. Three arginine-rich cell-penetrating peptides facilitate cellular internalization of red-emitting quantum dots. Journal of Nanoscience and Nanotechnology. 2015; 15(3): 2067–2078. doi: 10.1166/jnn.2015.9148 26413622
59. Jain A, Yadav BK, Chugh A. Marine antimicrobial peptide tachyplesin as an efficient nanocarrier for macromolecule delivery in plant and mammalian cells. The FEBS Journal. 2015; 282(4):732–745. doi: 10.1111/febs.13178 25514997
60. Alizadeh S, Irani S, Bolhassani A, Sadat SM. Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunology Letters. 2019.
61. Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. Journal of Controlled Release. 2013; 168(2):179–199. doi: 10.1016/j.jconrel.2013.03.010 23524187
62. Liu BR, Liou JS, Chen YJ, Huang YW, Lee HJ. Delivery of nucleic acids, proteins, and nanoparticles by arginine-rich cell-penetrating peptides in rotifers. Marine Biotechnology. 2013; 15(5): 584–595. doi: 10.1007/s10126-013-9509-0 23715807
63. Chen YJ, Liu BR, Dai YH, Lee CY, Chan MH, Chen HH, Chiang HJ, Lee HJ. A gene delivery system for insect cells mediated by arginine-rich cell-penetrating peptides. Gene. 2012; 493(2): 201–210. doi: 10.1016/j.gene.2011.11.060 22173105
64. Shahbazi S, Bolhassani A. Comparison of six cell penetrating peptides with different properties for in vitro and in vivo delivery of HPV16 E7 antigen in therapeutic vaccines. International Immunopharmacology. 2018; 62:170–180. doi: 10.1016/j.intimp.2018.07.006 30015237
65. Karpenko LI, Nekrasova NA, Ilyichev AA, Lebedev LR, Ignatyev GM, Agafonov AP, Zaitsev BN, Belavin PA, Seregin SV, Danilyuk NK, Babkina IN. Comparative analysis using a mouse model of the immunogenicity of artificial VLP and attenuated Salmonella strain carrying a DNA-vaccine encoding HIV-1 polyepitope CTL-immunogen. Vaccine. 2004; 22(13–14):1692–1699. doi: 10.1016/j.vaccine.2003.09.050 15068852
66. Habibzadeh N., Bolhassani A., Vahabpour R., Sadat S.M., How can improve DNA vaccine modalities as a therapeutic approach against HIV infections? J AIDS Clin Res. 2015; 6: 1–8.
67. Rostami B., Irani S., Bolhassani A., Cohan R.A., Gene and protein delivery using four cell penetrating peptides for HIV-1 vaccine development. IUBMB Life. 2019; 71(10): 1619–1633. doi: 10.1002/iub.2107 31220406
68. Rostami B., Irani S., Bolhassani A., Cohan R.A., M918: A novel cell penetrating peptide for effective delivery of HIV-1 Nef and Hsp20-Nef proteins into eukaryotic cell lines. Curr HIV Res. 2018; 16(4): 280–287 doi: 10.2174/1570162X17666181206111859 30520377
69. Shahbazi S., Haghighipour N., Soleymani S., Nadji S.A., Bolhassani A., Delivery of molecular cargoes in normal and cancer cell lines using non-viral delivery systems. Biotechnol Lett. 2018; 40(6): 923–931 doi: 10.1007/s10529-018-2551-2 29633093
70. Kadkhodayan S., Jafarzade B.S., Sadat S.M., Motevalli F., Agi E., Bolhassani A., Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett. 2017; 188: 38–45 doi: 10.1016/j.imlet.2017.06.003 28602843
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs