#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Effect of aridity and dune type on rhizosphere soil bacterial communities of Caragana microphylla in desert regions of northern China


Autoři: Jiangli Gao aff001;  Yang Luo aff001;  Yali Wei aff001;  Yaolong Huang aff001;  Hua Zhang aff001;  Wenliang He aff001;  Hongmei Sheng aff001;  Lizhe An aff001
Působiště autorů: Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China aff001;  The College of Forestry, Beijing Forestry University, Beijing, China aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224195

Souhrn

Understanding the response of soil properties and bacterial communities in rhizosphere soil to aridity and dune types is fundamental to desertification control. This study investigated soil properties and bacterial communities of both rhizosphere and bulk soils of Caragana microphylla from four sites with different aridity indices, and one site with three different types of dunes. All sites were located in the desert regions of northern China. The results indicated that compared with the bulk soil, the soil nutrient content of rhizosphere, especially the content of total phosphorus, was generally significantly improved in different desertification environments. The bacterial richness and diversity were also higher than those of bulk soil, especially in arid regions and fixed dunes. Firmicutes, Actinobacteria, Proteobacteria, and Acidobacteria were the most dominant phyla in all samples. The regression analyses showed that at different sites, soil total organic C, total N, Na+, and total P played key roles in determining the bacterial community structure while total organic carbon, electronic conductivity, pH and total phosphorus were the dominant factors at the different dunes. The results further revealed that the dominant phyla strongly affected by environmental factors at different sites were Acidobacteria, Gemmatimonadetes, and Actinobacteria among which, Acidobacteria and Gemmatimonadetes were negatively correlated with Na+ content. At different types of dunes, Actinobacteria, Planctomycetes, and Gemmatimonadetes were particularly affected by environmental factors. The increased abundance of Actinobacteria in the rhizosphere soil was mainly caused by the decreased soil pH.

Klíčová slova:

Bacteria – Actinobacteria – Rhizosphere – Community structure – Plant communities – Desertification – Shannon index – Soil pH


Zdroje

1. Wijitkosum S. The impact of land use and spatial changes on desertification risk in degraded areas in Thailand. Sustainable Environ Res. 2016; 26: 84–92. https://doi.org/10.1016/j.serj.2015.11.004

2. Martínez-Valderrama J, Ibáñez J, Del Barrio G, Sanjuán ME, Alcalá FJ, Martínez-Vicente S, et al. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation. Sci Total Environ. 2016; 563–564: 169–178. doi: 10.1016/j.scitotenv.2016.04.065 27135580

3. Sutton PC, Anderson SJ, Costanza R, Kubiszewski I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol Econ. 2016; 129: 182–192. https://doi.org/10.1016/j.ecolecon.2016.06.016

4. State Forestry Administration (SFA). The fifth national desertification and desertification land monitoring. Chinese Forestry Information. 2015.

5. Wang T, Zhu Z. Some problems of desertification in northern China. Quaternary Sciences. 2001; 21: 56–65.

6. Wang X, Chen FH, Dong Z, Xia D. Evolution of the southern Mu Us Desert in North China over the past 50 years: an analysis using proxies of human activity and climate parameters. Land Degrad Dev. 2005; 16: 351–366. doi: 10.1002/ldr.663

7. Li D, Xu D, Wang Z, Ding X, Song A. Ecological compensation for desertification control: a review. J Geogr Sci. 2018; 28(3): 367–384. https://doi.org/10.1016/j.ecolecon.2016.06.016

8. Ma F, Na X, Xu T. Drought responses of three closely related Caragana species: implication for their vicarious distribution. Ecol Evol. 2016; 6(9): 2763–2773. doi: 10.1002/ece3.2044 27217939

9. Su YZ, Zhao HL. Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, north China. Ecol Eng. 2003; 20(3): 223–235. https://doi.org/10.1016/S0925-8574(03)00042-9

10. Yang Y, Wang N, Guo X, Zhang Y, Ye B. Comparative analysis of bacterial community structure in the rhizosphere of maize by highthroughput pyrosequencing. PLoS ONE. 2017; 12(5): e0178425. doi: 10.1371/journal.pone.0178425 28542542

11. Venturi V, Keel C. Signaling in the Rhizosphere. Trends Plant Sci. 2016; 21(3): 187–198. doi: 10.1016/j.tplants.2016.01.005 26832945

12. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. Plos One. 2012; 7(10): e48479. doi: 10.1371/journal.pone.0048479 23119032

13. Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, et al. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil. 2016; 405(1–2): 357–370. doi: 10.1007/s11104-015-2650-y

14. Naylor D, Colemanderr D. Drought Stress and Root-Associated Bacterial Communities. Front Plant Sci. 2017; 8:2223. doi: 10.3389/fpls.2017.02223 29375600

15. Hartmann M, Brunner I, Hagedorn F, Bardgett D, Stierli B, Herzog C, et al. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol. 2017; 26(4): 1190–1206. doi: 10.1111/mec.13995 28028891

16. Wang SK, Zuo XA, Zhao XY, Li YQ, Zhou X, Lv P, et al. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China. Environ Monit Assess. 2016; 188(1): 21. doi: 10.1007/s10661-015-5031-3 26661957

17. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012; 488(7409): 86–90. doi: 10.1038/nature11237 22859206

18. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013; 110(16): 6548–6553. doi: 10.1073/pnas.1302837110 23576752

19. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA. 2015; 112(8): E911–E920. doi: 10.1073/pnas.1414592112 25605935

20. Pii Y, Borruso L, Brusetti L, Crecchio C, Cesco S, Mimmo T. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem. 2016; 99: 39–48. doi: 10.1016/j.plaphy.2015.12.002 26713550

21. Schreiter S, Ding GC, Heuer H, Neumann G, Sandmann M, Grosch R, et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol. 2014; 5: 144. doi: 10.3389/fmicb.2014.00144 24782839

22. Liu X, He Y, Zhao X, Zhang T, Li Y, Yun J, et al. The response of soil water and deep percolation under caragana microphylla, to rainfall in the horqin sand land, northern china. Catena. 2016; 139: 82–91. doi: 10.1016/j.catena.2015.12.006

23. Na X, Xu T, Li M, Zhou Z, Ma S, Wang J, et al. Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients. Front Microbio. 2018; 9: 709–721. doi: 10.3389/fmicb.2018.00709 29720969

24. Maestre FT, Delgadobaquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA. 2015; 112(51): 15684–15689. doi: 10.1073/pnas.1516684112 26647180

25. Cui Y, Fang L, Guo X, Wang X, Wang Y, Li P, et al. Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone. Sci Total Environ. 2018; 642: 45–55. doi: 10.1016/j.scitotenv.2018.06.033 29894881

26. Van Der Walt AJ, Johnson RM, Cowan DA, Seely M, Ramond JB. Unique microbial phylotypes in Namib Desert dune and gravel plain Fairy Circle soils. Appl Environ Microb. 2016; 82: 4592–4601. doi: 10.1128/AEM.00844-16 27208111

27. Wang X, Van Nostrand JD, Deng Y, Lu X, Wang C, Zhou J, et al. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China’s grasslands. FEMS Microbiol Ecol. 2015; 91:fiv133. doi: 10.1093/femsec/fiv133 26519142

28. Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP. The Cacti Microbiome: Interplay between Habitat-Filtering and Host-Specificity. Front Microbiol. 2016; 7: 150. doi: 10.3389/fmicb.2016.00150 26904020

29. Cao C, Zhang Y, Cui Z, Feng S, Wang T, Ren Q, et al. Soil bacterial community responses to revegetation of moving sand dune in semi-arid grassland. Appl Microbiol Biot. 2017; 101:6217–6228. doi: 10.1007/s00253-017-8336-z 28567480

30. Cao C, Jiang D, Teng X, Jiang Y, Liang W, Cui Z. Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Appl Soil Ecol. 2008; 40(1): 78–85. https://doi.org/10.1016/j.apsoil.2008.03.008

31. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. The WorldClim interpolated global terrestrial climate surfaces [Internet]. Version 1.3. Berkeley: University of CaliforniaPlace: Publisher; 2004 [2019, July 16]. Downloaded at Available from: http://biogeo.berkeley.edu/worldclim/worldclim.htm.

32. UNEP (United Nations Environment Programme). World atlas of desertification 2ED. UNEP London. 1997.

33. Koranda M, Schnecker J, Kaiser C, Fuchslueger L, Kitzler B, Stange CF. Microbial processes and community composition in the rhizosphere of European beech-The influence of plant C exudates. Soil Biol Biochem. 2011; 43(3): 551–558. doi: 10.1016/j.soilbio.2010.11.022 21412402

34. Smith KA. Soil analysis: instrumental techniques and related procedures. Dekker, New York. 1983.

35. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. NewPhytol. 2016; 209: 798–811. doi: 10.1111/nph.13697 26467257

36. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486(7402): 222–227. doi: 10.1038/nature11053 22699611

37. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. Vegan: community ecology package. R Package Version 2.0–10. 2013.

38. Djukic I, Zehetner F, Tatzber M, Gerzabek MH. Soil organic-matter stocks and characteristics along an Alpine elevation gradient. J Plant Nutr Soil Sci. 2010; 173(1): 30–38. https://doi.org/10.1002/jpln.200900027.

39. Franco-Otero VG, Soler-Rovira P, Hernández D, López-de-Sá EG, Plaza C. Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity, and chemical properties of soil. Biol Fertil Soils. 2012; 48(2): 205–216. https://doi.org/10.1007/s00374-011-0620-y.

40. Kang J, Zhao W, Su P, Zhao M, Yang Z. Sodium (Na+) and silicon (Si) coexistence promotes growth and enhances drought resistance of the succulent xerophyte Haloxylon ammodendron. Soil Sci Plant Nutr. 2014; 60(5): 659–669. https://doi.org/10.1080/00380768.2014.935695

41. Hu J, Ma Q, Kumar T, Duan HR, Zhang JL, Yuan HJ, et al. ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis. J Plant Growth Regul. 2016; 80(2): 195–205. doi: 10.1007/s10725-016-0157-z

42. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 2010; 23(3): 319–327. doi: 10.1046/j.1365-313x.2000.00787.x 10929125

43. Cheng Z, Chen Y, Zhang F. Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid northwest China. Sci Total Environ. 2018; 630: 799–808. doi: 10.1016/j.scitotenv.2018.02.259 29494981

44. Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Fei T. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles. 2012; 16(3): 553–566. doi: 10.1007/s00792-012-0454-z 22527047

45. Singh BK, Munro S, Potts JM, Millard P. Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol. 2007; 36(2): 147–155. doi: 10.1016/j.apsoil.2007.01.004

46. Nicholson CA, Fathepure BZ. Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. Fems Microbiol Lett. 2005; 245(2): 257–262. doi: 10.1016/j.femsle.2005.03.014 15837380

47. Wolińska A, Kuźniar A, Zielenkiewicz U, Izak D, Szafranek-Nakonieczna A, Banach A, et al. Bacteroidetes, as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Appl Soil Ecol. 2017; 119: 128–137. https://doi.org/10.1016/j.apsoil.2017.06.009

48. Johnston-Monje D, Lundberg DS, Lazarovits G, Reis VM, Raizada MN. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil. 2016; 405(1): 337–355. https://doi.org/10.1007/s11104-016-2826-0.

49. Kielak AM, Cipriano MAP, Kuramae EE. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol. 2016; 198(10): 987–993. doi: 10.1007/s00203-016-1260-2 27339258

50. Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013; 7: 384–394. doi: 10.1038/ismej.2012.113 23151641

51. Abiala MA, Odebode AC, Hsu SF, Blackwood CB. Phytobeneficial properties of bacteria isolated from the rhizosphere of maize in southwestern Nigerian soils. Appl Environ Microbiol. 2015; 81(14): 4736–4743. doi: 10.1128/AEM.00570-15 25956774

52. Bao P, Wang S, Ma B, Zhang Q, Peng Y. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor. J Environ Sci. 2017; 56(6): 71–78. https://doi.org/10.1016/j.jes.2016.09.004

53. Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets BF, et al. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol. 2010; 12(2): 315–326. doi: 10.1111/j.1462-2920.2009.02070.x 19807778

54. Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007; 88(6):1354–1364. doi: 10.1890/05-1839 17601128

55. Liu J, Sui Y, Yu Z, Shi Y, Chu H, Jin J, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol Biochem. 2014; 70: 113–122. https://doi.org/10.1016/j.soilbio.2013.12.014.

56. Tóth Z, Táncsics A, Kriszt B, Kröel-Dulay G, Ónodi G, Hornung E. Extreme effects of drought on composition of the soil bacterial community and decomposition of plant tissue: bacterial community and plant tissue decomposition. Eur J Soil Sci. 2017; 68: 504–513. doi: 10.1111/ejss.12429

57. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012; 488: 91–95. doi: 10.1038/nature11336 22859207

58. Zhou J, Guan D, Zhou B, Zhao B, Ma M, Qin J, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol Biochem. 2015; 90: 42–51. https://doi.org/10.1016/j.soilbio.2015.07.005.

59. Khan A, Anwar Y, Hasan M, Iqbal A, Ali M, Alharby H, et al. Attenuation of drought stress inbrassicaseedlings with exogenous application of Ca2+ and H2O2. Plants. 2017; 6(2): 20–33. doi: 10.3390/plants6020020 28505096

60. Hua J, Feng Y, Jiang Q, Bao X, Yin Y. Shift of bacterial community structure along different coastal reclamation histories in jiangsu, eastern china. Sci Rep. 2017; 7(1): 10096. doi: 10.1038/s41598-017-10608-3 28855690

61. Kim JM, Roh AS, Choi SC, Kim EJ, Choi MT, Ahn BK, et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J Microbiol. 2016; 54(12): 838–845. doi: 10.1007/s12275-016-6526-5 27888456

62. Cheng Z, Zhang F, Gale WJ, Wang W, Sang W, Yang H. Effects of reclamation years on composition and diversity of soil bacterial communities in Northwest China. Can J Microbiol 2017; 64(1): 28–40. doi: 10.1139/cjm-2017-0362 29045798

63. Haichar FEZ, Santaella C, Heulin T, Achouak W. Root exudates mediated interactions belowground. Soil Biol Biochem. 2014; 77(7): 69–80. https://doi.org/10.1080/00380768.1997.10414754


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#