The contribution of linear perspective cues and texture gradients in the perceptual rescaling of stimuli inside a Ponzo illusion corridor
Autoři:
Gizem Y. Yildiz aff001; Irene Sperandio aff002; Christine Kettle aff003; Philippe A. Chouinard aff001
Působiště autorů:
Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
aff001; School of Psychology, University of East Anglia, Norwich, United Kingdom
aff002; Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, La Trobe University, Melbourne, Australia
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223583
Souhrn
We examined the influence of linear perspective cues and texture gradients in the perceptual rescaling of stimuli over a highly-salient Ponzo illusion of a corridor. We performed two experiments using the Method of Constant Stimuli where participants judged the size of one of two rings. In experiment 1, one ring was presented in the upper visual-field at the end of the corridor and the other in the lower visual-field at the front of the corridor. The perceived size of the top and bottom rings changed as a function of the availability of linear perspective and textures. In experiment 2, only one ring was presented either at the top or the bottom of the image. The perceived size of the top but not the bottom ring changed as a function of the availability of linear perspective and textures. In both experiments, the effects of the cues were additive. Perceptual rescaling was also stronger for the top compared to the bottom ring. Additional eye-tracking revealed that participants tended to gaze more in the upper than the lower visual-field. These findings indicate that top-down mechanisms provide an important contribution to the Ponzo illusion. Nonetheless, additional maximum likelihood estimation analyses revealed that linear perspective fulfilled a greater contribution in experiment 2, which is suggestive of a bottom-up mechanism. We conclude that both top-down and bottom-up mechanisms play important roles. However, the former seems to fulfil a more prominent role when both stimuli are presented in the image.
Klíčová slova:
Analysis of variance – Eyes – Sensory perception – Vision – Sensory cues – Attention – Visual system – Texture
Zdroje
1. Epstein W. Percept-percept couplings. Perception. 1982;11(1):75–83. doi: 10.1068/p110075 6752865
2. Gregory RL. Perceptual illusions and brain models. Proc R Soc Lond B Biol Sci. 1968;171(1024):279–96. doi: 10.1098/rspb.1968.0071 4387405
3. Sperandio I, Chouinard PA. The Mechanisms of Size Constancy. Multisens Res. 2015;28(3–4):253–83. 26288899
4. Cutting JE, Vishton PM. Perceiving layout: The integration, relative dominance, and contextual use of different information about depth. In: Epstein W, Rogers S, editors. Handbook of Perception and Cognition. 5. NY: Academic Press; 1995. pp. 69–117.
5. Gregory RL. Eye and brain: the psychology of seeing. 5th ed. Oxford; New York: Oxford University Press; 1998. pp. 277–80.
6. Ponzo M. Rapports entre quelques illusions visuelles de contraste angulaire et l’appréciation de grandeur des astres à l’horizon. Arch Ital Biol. 1912;58:327–9.
7. Day RH. Visual spatial illusions: a general explanation. Science. 1972;175(4028):1335–40. doi: 10.1126/science.175.4028.1335 5059563
8. Gregory RL. Distortion of Visual Space as Inappropriate Constancy Scaling. Nature. 1963;199:678–80. doi: 10.1038/199678a0 14074555
9. Greene RT, Lawson RB, Godek CL. The Ponzo illusion in stereoscopic space. J Exp Psychol. 1972;95(2):358–64. doi: 10.1037/h0033607 5071914
10. Hennessy RT, Leibowitz HW. Perceived Vs Retinal Relationships in Ponzo Illusion. Psychon Sci. 1972;28(2):111–2.
11. Leibowitz H, Brislin R, Perlmutrer L, Hennessy R. Ponzo perspective illusion as a manifestation of space perception. Science. 1969;166(3909):1174–6. doi: 10.1126/science.166.3909.1174 17775578
12. Fineman MB, Carlson J. Comparison of Ponzo Illusion with a Textural Analog. Percept Psychophys. 1973;14(1):31–3. doi: 10.3758/Bf03198612
13. Rennig J, Karnath HO, Huberle E. The role of size constancy for the integration of local elements into a global shape. Front Hum Neurosci. 2013;7. doi: 10.3389/fnhum.2013.00342 23840187
14. Gibson JJ. The perception of the visual world. Boston: Houghton Mifflin; 1950. 235–8.
15. Newman CV. Variations in size judgements as a function of surface texture. Q J Exp Psychol. 1973;25(2):260–4. doi: 10.1080/14640747308400346 4515821
16. Norman J. Direct and indirect perception of size. Percept Psychophys. 1980;28(4):306–14. doi: 10.3758/bf03204389 7465313
17. Hemker L, Kavsek M. The relative contribution of relative height, linear perspective, and texture gradients to pictorial depth perception in 7-month-old infants. Perception. 2010;39(11):1476–90. doi: 10.1068/p6682 21313945
18. Witmer BG, Kline PB. Judging perceived and traversed distance in virtual environments. Presence-Teleop Virt. 1998;7(2):144–67. doi: 10.1162/105474698565640
19. Wu B, He ZJ, Ooi TL. The linear perspective information in ground surface representation and distance judgment. Percept Psychophys. 2007;69(5):654–72. doi: 10.3758/bf03193769 17929690
20. Zhang F. The Impact of Background and Context on Car Distance Estimation [dissertation on the Internet]. Hamilton, New Zealand: University of Waikato; 2014. https://hdl.handle.net/10289/86822014
21. Chouinard PA, Peel HJ, Landry O. Eye-Tracking Reveals that the Strength of the Vertical-Horizontal Illusion Increases as the Retinal Image Becomes More Stable with Fixation. Front Hum Neurosci. 2017;11. doi: 10.3389/fnhum.2017.00143 28392764
22. Fang F, Boyaci H, Kersten D, Murray SO. Attention-Dependent Representation of a Size Illusion in Human V1. Curr Biol. 2008;18(21):1707–12. doi: 10.1016/j.cub.2008.09.025 18993076
23. Festinger L, White CW, Allyn MR. Eye Movements and Decrement in Muller-Lyer Illusion. Percept Psychophys. 1968;3(5b):376–82.
24. Richards W, Miller JF. Corridor Illusion. Percept Psychophys. 1971;9(5):421–3. doi: 10.3758/Bf03210243
25. Snellen H. Letterproeven tot Bepaling der Gezichtsscherpte. Utrecht, the Netherlands Van de Weyer; 1862.
26. Antona B, Barrio A, Sanchez I, Gonzalez E, Gonzalez G. Intraexaminer repeatability and agreement in stereoacuity measurements made in young adults. Int J Ophthalmol-Chi. 2015;8(2):374–81. doi: 10.3980/j.issn.2222-3959.2015.02.29 25938059
27. Ishihara S. Tests for colour-blindness. Tokyo: Hongo Harukicho; 1917.
28. Brainard DH. The Psychophysics Toolbox. Spat Vis. 2011;(10):433–6.
29. Pelli DG. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision. 1997;10(4):437–42. doi: 10.1163/156856897x00366 9176953
30. Lu ZL, Dosher B. Visual Psychophysics: From Laboratory to Theory. Visual Psychophysics: From Laboratory to Theory. 2014:1–450.
31. Alais D, Burr D. The ventriloquist effect results from near-optimal bimodal integration. Curr Biol. 2004;14(3):257–62. doi: 10.1016/j.cub.2004.01.029 14761661
32. Sperandio I, Kaderali S, Chouinard PA, Frey J, Goodale MA. Perceived Size Change Induced by Nonvisual Signals in Darkness: The Relative Contribution of Vergence and Proprioception. J Neurosci. 2013;33(43):16915–23. doi: 10.1523/JNEUROSCI.0977-13.2013 24155297
33. O’Brien F, Cousineau D. Representing Error bars in within-subject designs in typical software packages Quant Meth Psychol. 2014;10(1):56–67. doi: 10.20982/tqmp.11.2.p126
34. Redding GM. A test of size-scaling and relative-size hypotheses for the moon illusion. Percept Psychophys. 2002;64(8):1281–9. doi: 10.3758/bf03194771 12519025
35. Miller RJ. Pictorial Depth Cue Orientation Influences the Magnitude of Perceived Depth. Visual Arts Research. 1997;23: 97–124.
36. Moutsiana C, de Haas B, Papageorgiou A, van Dijk JA, Balraj A, Greenwood JA, et al. Cortical idiosyncrasies predict the perception of object size. Nat Commun. 2016;7.
37. Finlayson NJ, Papageorgiou A, Schwarzkopf DS. A new method for mapping perceptual biases across visual space. J Vision. 2017;17(9):1–9. doi: 10.1167/17.9.5 28800367
38. Murray SO, Boyaci H, Kersten D. The representation of perceived angular size in human primary visual cortex. Nat Neurosci. 2006;9(3):429–34. doi: 10.1038/nn1641 16462737
39. Schmidt F, Haberkamp A. Temporal processing characteristics of the Ponzo illusion. Psychol Res. 2016;80(2):273–85. doi: 10.1007/s00426-015-0659-8 25772166
40. Song C, Schwarzkopf DS, Rees G. Interocular induction of illusory size perception. BMC Neurosci. 2011;12:27. doi: 10.1186/1471-2202-12-27 21396093
41. Ginsburg AP. Visual form perception based on biological filtering. In: Spillmann L, Wooten BR, editors. Sensory Experience, Adaptation, and Perception. 111984. pp. 53–72.
42. Girgus JS, Coren S. Assimilation and Contrast Illusions—Differences in Plasticity. Percept Psychophys. 1982;32(6):555–61. doi: 10.3758/bf03204210 7167354
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs