Correction: Comparison of risk models for mortality and cardiovascular events between machine learning and conventional logistic regression analysis
Authors:
Published in the journal:
PLoS ONE 14(10)
Category:
Correction
doi:
https://doi.org/10.1371/journal.pone.0223931
Notice of republication
An incomplete, earlier version of this article was published in error. The publisher apologizes for the error. This article was republished on October 1, 2019 to correct for this error. Please download the article again to view the correct version. The originally published, uncorrected article and the republished, corrected article are provided here for reference.
Supporting information
S1 File [pdf]
Originally published, uncorrected article.
S2 File [pdf]
Republished corrected article.
Zdroje
1. Suzuki S, Yamashita T, Sakama T, Arita T, Yagi N, Otsuka T, et al. (2019) Comparison of risk models for mortality and cardiovascular events between machine learning and conventional logistic regression analysis. PLoS ONE 14(9): e0221911. https://doi.org/10.1371/journal.pone.0221911 31499517
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis