A phase 2 study of an oral mTORC1/mTORC2 kinase inhibitor (CC-223) for non-pancreatic neuroendocrine tumors with or without carcinoid symptoms
Autoři:
Edward Wolin aff001; Alain Mita aff001; Amit Mahipal aff002; Tim Meyer aff003; Johanna Bendell aff004; John Nemunaitis aff005; Pam N. Munster aff006; Luis Paz-Ares aff007; Ellen H. Filvaroff aff008; Shaoyi Li aff009; Kristen Hege aff008; Hans de Haan aff008; Monica Mita aff001
Působiště autorů:
Experimental Therapeutics Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
aff001; Phase 1 Clinical Trials Program, Mayo Clinic, Rochester, MN, United States of America
aff002; Experimental Cancer Medicine, University College Hospital, London, United Kingdom
aff003; GI Oncology Research, Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, United States of America
aff004; Department of Oncology, Mary Crowley Cancer Research Center, Dallas, TX, United States of America
aff005; Early Phase Clinical Research Program, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, United States of America
aff006; Medical Oncology Department, Hospital Universitario 12 de Octubre, CNIO, Universidad Complutense and CiberOnc, Madrid, Spain
aff007; Translational Medicine, Celgene Corporation, San Francisco, CA, United States of America
aff008; Department of Statistics, Celgene Corporation, Summit, NJ, United States of America
aff009
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221994
Souhrn
Second-generation mammalian target of rapamycin (mTOR) inhibitors such as CC-223 may have theoretical advantages over first-generation drugs by inhibiting TOR kinase in mTOR complex 1 (mTORC1) and 2 (mTORC2), potentially improving clinical efficacy for well-differentiated neuroendocrine tumors (NET).Enrolled patients had metastatic, well-differentiated NET of non-pancreatic gastrointestinal or unknown origin, with/without carcinoid symptoms, had failed ≥1 systemic chemotherapy, and were taking a somatostatin analog (SSA). Oral once-daily CC-223 was administered in 28-day cycles starting at 45 mg (n = 24), with a subsequent cohort starting at 30 mg (n = 23). Objectives were to evaluate tolerability, preliminary efficacy, and pharmacokinetic and biomarker profiles of CC-223. Forty-seven patients completed the study, with mean treatment duration of 378 days and mean dose of 26 mg; 26% of patients remained on the starting dose. Most frequent grade ≥3 toxicities were diarrhea (38%), fatigue (21%), and stomatitis (11%). By investigator, 3 of 41 evaluable patients (7%) showed partial response (PR) and 34 (83%) had stable disease (SD) for a disease control rate (DCR) of 90% (95% confidence interval [CI] 76.9–97.3%). Duration of PR was 125–401 days; median SD duration was 297 days (min–max, 50–1519 days). Median progression-free survival was 19.5 months (95% CI 10.4–28.5 months). Carcinoid symptoms of flushing, diarrhea, or both improved in 50%, 41%, and 39% of affected patients, respectively. For the first time, this study describes that a second-generation mTOR pathway inhibitor can result in highly durable tumor regression and control of NET carcinoid symptoms. The manageable safety profile, high DCR, and durable response, coupled with reduction in carcinoid symptoms refractory to SSA, make CC-223 a promising agent for further development.
Klíčová slova:
Biology and life sciences – Biochemistry – Research and analysis methods – Enzymology – Anatomy – Medicine and health sciences – Pathology and laboratory medicine – Physiology – Diagnostic medicine – Signs and symptoms – Pharmacology – Research design – Pharmacokinetics – Drug metabolism – Body fluids – Blood – Gastroenterology and hepatology – Oncology – Cancer treatment – Clinical research design – Adverse events – Biomarkers – Toxicology – Toxicity – Diarrhea – Enzyme inhibitors – Kinase inhibitors
Zdroje
1. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after "carcinoid": epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72. doi: 10.1200/JCO.2007.15.4377. 18565894.
2. National Cancer Institute. SEER Cancer Statistics Review 1975–2016 [Accessed May 3, 2019]. Available from: https://seer.cancer.gov/csr/1975_2016/results_merged/topic_prevcounts.pdf.
3. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77. doi: 10.1016/S0140-6736(15)00817-X 26703889
4. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. The New England journal of medicine. 2011;364(6):514–23. Epub 2011/02/11. doi: 10.1056/NEJMoa1009290. 21306238; PubMed Central PMCID: PMC4208619.
5. Kim JO, Kim KH, Song IS, Cheon KS, Kim OH, Lee SC, et al. Potentiation of the anticancer effects of everolimus using a dual mTORC1/2 inhibitor in hepatocellular carcinoma cells. Oncotarget. 2017;8(2):2936–48. Epub 2016/12/10. doi: 10.18632/oncotarget.13808. 27935857; PubMed Central PMCID: PMC5356853.
6. Chan JY, Choudhury Y, Tan MH. Doubling Down on mTOR Inhibition: Harnessing ZEBRA for Insights. Eur Urol. 2016;69(3):457–9. Epub 2015/10/16. doi: 10.1016/j.eururo.2015.09.047. 26463319.
7. Freitag H, Christen F, Lewens F, Grass I, Briest F, Iwaszkiewicz S, et al. Inhibition of mTOR's Catalytic Site by PKI-587 Is a Promising Therapeutic Option for Gastroenteropancreatic Neuroendocrine Tumor Disease. Neuroendocrinology. 2017;105(1):90–104. Epub 2016/08/12. doi: 10.1159/000448843. 27513674; PubMed Central PMCID: PMC5475233.
8. Kannan A, Lin Z, Shao Q, Zhao S, Fang B, Moreno MA, et al. Dual mTOR inhibitor MLN0128 suppresses Merkel cell carcinoma (MCC) xenograft tumor growth. Oncotarget. 2016;7(6):6576–92. Epub 2015/11/05. doi: 10.18632/oncotarget.5878. 26536665; PubMed Central PMCID: PMC4872734.
9. Musa F, Alard A, David-West G, Curtin JP, Blank SV, Schneider RJ. Dual mTORC1/2 Inhibition as a Novel Strategy for the Resensitization and Treatment of Platinum-Resistant Ovarian Cancer. Mol Cancer Ther. 2016;15(7):1557–67. doi: 10.1158/1535-7163.MCT-15-0926. 27196780; PubMed Central PMCID: PMC5323079.
10. Zou Z, Chen J, Yang J, Bai X. Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin. Current cancer drug targets. 2016;16(4):288–304. Epub 2015/11/14. 26563881.
11. Mortensen DS, Fultz KE, Xu S, Xu W, Packard G, Khambatta G, et al. CC-223, a Potent and Selective Inhibitor of mTOR Kinase: In Vitro and In Vivo Characterization. Mol Cancer Ther. 2015;14(6):1295–305. Epub 2015/04/10. doi: 10.1158/1535-7163.MCT-14-1052. 25855786.
12. Orr-Asman MA, Chu Z, Jiang M, Worley M, LaSance K, Koch SE, et al. mTOR Kinase Inhibition Effectively Decreases Progression of a Subset of Neuroendocrine Tumors that Progress on Rapalog Therapy and Delays Cardiac Impairment. Mol Cancer Ther. 2017;16(11):2432–41. Epub 2017/09/03. doi: 10.1158/1535-7163.MCT-17-0058. 28864682.
13. Bendell JC, Kelley RK, Shih KC, Grabowsky JA, Bergsland E, Jones S, et al. A phase I dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer. 2015;121(19):3481–90. doi: 10.1002/cncr.29422. 26177599; PubMed Central PMCID: PMC4832308.
14. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. doi: 10.1016/j.ejca.2008.10.026. 19097774.
15. Wald A. Sequential tests of statistical hypotheses. Ann Math Statist. 1945;16(2):117–86.
16. Varga A, Mita MM, Wu JJ, Nemunaitis JJ, Cloughesy TF, Mischel PS, et al. Phase I expansion trial of an oral TORC1/TORC2 inhibitor (CC-223) in advanced solid tumors. Journal of Clinical Oncology. 2013;31(15_suppl):2606-. doi: 10.1200/jco.2013.31.15_suppl.2606
17. Faggiano A, Malandrino P, Modica R, Agrimi D, Aversano M, Bassi V, et al. Efficacy and Safety of Everolimus in Extrapancreatic Neuroendocrine Tumor: A Comprehensive Review of Literature. Oncologist. 2016;21(7):875–86. doi: 10.1634/theoncologist.2015-0420. 27053503; PubMed Central PMCID: PMC4943387.
18. Kaplan B, Qazi Y, Wellen JR. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev (Orlando). 2014;28(3):126–33. doi: 10.1016/j.trre.2014.03.002. 24685370.
19. Su DW, Mita M, Mita AC. The Clinical Pharmacology and Toxicity Profile of Rapalogs. 1 ed. Mita M, Mita A, Rowinsky EK, editors: Springer-Verlag Paris; 2016.
20. Goldman JW, Mendenhall MA, Rettinger SR. Hyperglycemia Associated With Targeted Oncologic Treatment: Mechanisms and Management. Oncologist. 2016;21(11):1326–36 doi: 10.1634/theoncologist.2015-0519. 27473045; PubMed Central PMCID: PMC5189614.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania