Novel synergistic fungicidal mixtures of oxathiapiprolin protect sunflower seeds from downy mildew caused by Plasmopara halstedii
Autoři:
Yigal Cohen aff001; Avia E. Rubin aff001; Mariana Galperin aff001
Působiště autorů:
The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222827
Souhrn
Plenaris (oxathiapiprolin) applied to sunflower seedlings was highly effective in controlling downy mildew incited by the oomycete Plasmopara halstedii. In vitro assays revealed strong suppression of zoospore release and cystospore germination of P.halstedii by Plenaris. Bion (acibenzolar-S-methyl) and Apron (mefenoxam) were partially effective when used singly, but performed synergistically when mixed with Plenaris. Seed treatment (coating) with Plenaris provided dose-dependent control of the disease whereas Bion and Apron provided partial or poor control. However, seeds treated with mixtures containing reduced rates of Plenaris and full rates of Bion and/or Apron provided complete control of the disease due to the synergistic interaction between these components. Such mixtures should be used for seed treatment in the field to minimize selection pressure imposed on the pathogen.
Klíčová slova:
Leaves – Seeds – Seedlings – Agricultural methods – Fungicides – Sunflower – Downy mildew – Fungal sporulation
Zdroje
1. Viranyi F, Gulya TJ, Tourvieille DL. Recent changes in the pathogenic variability of Plasmopara halstedii (sunflower downy mildew) populations from different continents. Helia. 2015;38: 149–162. doi: 10.1515/helia-2015-0009
2. Gulya T, Harveson R, Mathew F, Block C, Thompson S, et al. Comprehensive disease survey of U.S. sunflower: Disease trends, research priorities and unanticipated impacts. Plant Dis. 2019; 103: 601–618. doi: 10.1094/PDIS-06-18-0980-FE 30789318
3. Spring O, Gomez-Zeledon J, Hadziabdic D, Trigiano RN, Thines M, et al. Biological characteristics and assessment of virulence diversity in pathosystems of economically important biotrophic oomycetes. Crit Rev Plant Sci. 2019. doi: 10.1080/07352689.2018.1530848
4. Viranyi F. CABI Invasive Species Compendium. Datasheet Plasmopara halstedii. 2018. https://www.cabi.org/isc/datasheet/41911.
5. Cohen Y, Sackston WE. Seed infection and latent infection of sunflowers by Plasmopara halstedii. Can J Bot. 1974;52: 231–238.
6. Spring O. Nonsystemic infections of sunflower with Plasmopara halstedii and their putative role in the distribution of the pathogen. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Journal of Plant Diseases and Protection. 2001;108: 329–336.
7. Spring O. Homothallic sexual reproduction in Plasmopara halstedii, the downy mildew of sunflower. Helia. 2000;32: 19–26.
8. Gascuel Q, Martinez Y, Boniface MC, Vear F, Pichon M, et al. The sunflower downy mildew pathogen Plasmopara halstedii. Mol Plant Pathol. 2015;16: 109–122. doi: 10.1111/mpp.12164 25476405
9. Cohen Y, Sackston WE. Factors affecting infection of sunflowers by Plasmopara halstedii. Canadian Journal of Botany-Revue Canadienne De Botanique. 1973;51: 15–22.
10. Spring O. Transition of secondary to systemic infection of sunflower with Plasmopara halstedii: An underestimated factor in the epidemiology of the pathogen. Fungal Ecology. 2008;2: 75–80.
11. Sharma R, Xia XJ, Cano LM, Evangelisti E, Kemen E, et al. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics. 2015;16: 741. doi: 10.1186/s12864-015-1904-7 26438312
12. Gascuel Q, Bordat A, Sallet E, Pouilly N, Carrere S, et al. Effector polymorphisms of the sunflower downy mildew pathogen Plasmopara halstedii and their use to identify pathotypes from field isolates. PLOS ONE. 2016;11: e0148513. doi: 10.1371/journal.pone.0148513 26845339
13. Molinero-Ruiz ML, Dominguez J, Melero-Vara JM. Races of isolates of Plasmopara halstedii from Spain and studies on their virulence. Plant Dis. 2002;86: 736–740. doi: 10.1094/PDIS.2002.86.7.736 30818569
14. Trojanová Z, Sedlářová M, Gulya TJ, Lebeda A. Methodology of virulence screening and race characterization of Plasmopara halstedii, and resistance evaluation in sunflower–a review Plant Pathol. 2017;66: 171–185. https://doi.org/10.1111/ppa.12593.
15. Spring O, Zipper R. Asexual recombinants of Plasmopara halstedii pathotypes from dual infection of sunflower. PLOS ONE. 2016;11: e0167015. doi: 10.1371/journal.pone.0167015 27907026
16. Iwebor M, Antonova T, Saukova S. Occurrence and distribution of races 713, 733 and 734 of sunflower downy mildew pathogen in the Russian Federation. Helia. 2018;41. doi: 10.1515/helia-2018-0015
17. Gisi U, Cohen Y. Resistance to phenylamide fungicides: A case study with Phytophthora infestans involving mating type and race structure. Ann Rev Phytopathology. 1996;34: 549–572.
18. Albourie JM, Tourvieille J, de Labrouhe DT. Resistance to metalaxyl in isolates of the sunflower pathogen Plasmopara halstedii. Eur J Plant Pathol. 1998;104: 235–242.
19. Ruiz MLM, Dominguez J, Vara JMM, Gulya TJ. Tolerance to metalaxyl in Spanish isolates of Plasmopara halstedii. Proceedings of the 15th International Sunflower Conference, Toulouse, G11-G15; 2000
20. Spring O, Zipper R, Heller-Dohmen M. First report of metalaxyl resistant isolates of Plasmopara halstedli on cultivated sunflower in Germany. Journal of Plant Diseases and Protection. 2006;113: 224.
21. Molinero-Ruiz ML, Dominguez J, Gulya TJ, Melero-Vara JM. Reaction of field populations of sunflower downy mildew (Plasmopara halstedii) to metalaxyl and mefenoxam. Helia. 2005;28: 65–74.
22. Cohen Y. The novel oomycide oxathiapiprolin inhibits all stages in the asexual life cycle of Pseudoperonospora cubensis—causal agent of cucurbit downy mildew. PLOS One. 2015;10. doi: ARTN e0140015 doi: 10.1371/journal.pone.0140015
23. Pasteris RJ, Hanagan MA, Bisaha JJ, Finkelstein BL, Hoffman LE, et al. Discovery of oxathiapiprolin, a new oomycete fungicide that targets an oxysterol binding protein. Biorg Med Chem. 2016;24: 354–361.
24. Weber-Boyvat M, Zhong WB, Yan DG, Olkkonen VM. Oxysterol-binding proteins: Functions in cell regulation beyond lipid metabolism. Biochem Pharmacol. 2013;86: 89–95. doi: 10.1016/j.bcp.2013.02.016 23428468
25. Miao JQ, Cai M, Dong X, Liu L, Lin D, et al. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance. Frontiers in Microbiology. 2016;7: 615–620. doi: 10.3389/fmicb.2016.00615 27199944
26. Miao JQ, Chi YD, Lin D, Tyler BM, Liu XL. Mutations in ORP1 conferring oxathiapiprolin resistance confirmed by genome editing using CRISPR/Cas9 in Phytophthora capsici and P. sojae. Phytopathology. 2018;108: 1412–1419. doi: 10.1094/PHYTO-01-18-0010-R 29979095
27. Cohen Y, Rubin AE, Galperin M. Oxathiapiprolin-based fungicides provide enhanced control of tomato late blight induced by mefenoxam-insensitive Phytophthora infestans. PLOS ONE. 2018;13: e0204523. doi: 10.1371/journal.pone.0204523 30260986
28. Cohen Y, Rubin AE, Galperin M. Control of cucumber downy mildew with novel fungicidal mixtures of Oxathiapiprolin. Phytoparasitica. 2018;46: 689–704. doi: 10.1007/s12600-018-0702-6
29. Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, et al. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 1996;10: 71–82. doi: 10.1046/j.1365-313x.1996.10010071.x 8758979
30. Bán R, Virányi F, Komjáti H. Benzothiadiazole-induced resistance to Plasmopara halstedii (Farl.) Berl. et de Toni in sunflower In: Spencer-Phillips PTN, editor. Advances in Downy Mildew Research, Kluwer Academic Publishers, Dordrecht, 265–273; 2004
31. Tosi L, Luigetti R, Zazzerini A. Benzothiadiazole induces resistance to Plasmopara helianthi in sunflower plants. Journal of Phytopathology-Phytopathologische Zeitschrift. 1999;147: 365–370.
32. Korosi K, Ban R, Barna B, Viranyi F. Biochemical and molecular changes in downy mildew-infected sunflower triggered by resistance inducers. J Phytopathol. 2011;159: 471–478.
33. Perez L, Rodriguez ME, Rodriguez F, Roson C. Efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance against tobacco blue mould caused by Peronospora hyoscyami f. sp tabacina. Crop Protect. 2003;22: 405–413.
34. Ramasamy AD, Bokshi AI, Phan-Thien K, McConchie RM. Seed treatment with benzothiadiazole induces resistance against powdery mildew disease caused by Sphaerotheca fuliginea and increases the activities of pathogenesis-related enzymes in cucumber plants. J Horticult Sci Biotechnol. 2015;90: 63–70. doi: 10.1080/14620316.2015.11513154
35. Levy Y, Benderly M, Cohen Y, Gisi U, Bassand D. The joint action of fungicides in mixtures: comparison of two methods for synergy calculation. EPPO Bull. 1986;16: 651–657.
36. Kosman E, Cohen Y. Procedures for calculating and differentiating synergism and antagonism in action of fungicide mixtures. Phytopathology. 1996;86: 1263–1272.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania