#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genome-wide analysis of DNA methylation profile identifies differentially methylated loci associated with human intervertebral disc degeneration


Autoři: Akihiro Ikuno aff001;  Koji Akeda aff002;  Shin-ichiro Takebayashi aff001;  Motomu Shimaoka aff003;  Katsuzumi Okumura aff001;  Akihiro Sudo aff002
Působiště autorů: Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan aff001;  Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan aff002;  Department of Molecular Pathobiology3, Mie University Graduate School of Medicine, Tsu, Japan aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222188

Souhrn

Background

Environmental and endogenous factors under genetic predisposition are considered to initiate the human intervertebral disc (IVD) degeneration. DNA methylation is an essential mechanism to ensure cell-specific gene expression for normal development and tissue stability. Aberrant epigenetic alterations play a pivotal role in several diseases, including osteoarthritis. However, epigenetic alternations, including DNA methylation, in IVD degeneration have not been evaluated. The purpose of this study was to comprehensively compare the genome-wide DNA methylation profiles of human IVD tissues, specifically nucleus pulpous (NP) tissues, with early and advanced stages of disc degeneration.

Methods

Human NP tissues were used in this study. The samples were divided into two groups: early stage degeneration (n = 8, Pfirrmann’s MRI grade: I-III) and advanced stage degeneration (n = 8, grade: IV). Genomic DNA was processed for genome-wide DNA methylation profiling using the Infinium MethylationEPIC BeadChip array. Extraction of raw methylation data, clustering and scatter plot of each group values of each sample were performed using a methylation module in GenomeStudio software. The identification of differentially methylated loci (DMLs) and the Gene Ontology (GO) analysis were performed using R software with the ChAMP package.

Results

Unsupervised hierarchical clustering revealed that early and advanced stage degenerated IVD samples segregated into two main clusters by their DNA methylome. A total of 220 DMLs were identified between early and advanced disc degeneration stages. Among these, four loci were hypomethylated and 216 loci were hypermethylated in the advanced disc degeneration stage. The GO enrichment analysis of genes containing DMLs identified two significant GO terms for biological processes, hemophilic cell adhesion and cell-cell adhesion.

Conclusions

We conducted a genome-wide DNA methylation profile comparative study and observed significant differences in DNA methylation profiles between early and advanced stages of human IVD degeneration. These results implicate DNA methylation in the process of human IVD degeneration.

Klíčová slova:

DNA – Biology and life sciences – Cell biology – Chromosome biology – Chromatin – Chromatin modification – DNA methylation – Genetics – Epigenetics – DNA modification – Gene expression – Genomics – Genome analysis – Biochemistry – Nucleic acids – Computational biology – Research and analysis methods – Genetic loci – Medicine and health sciences – Cellular structures and organelles – Diagnostic medicine – Rheumatology – Arthritis – Imaging techniques – Diagnostic radiology – Magnetic resonance imaging – Radiology and imaging – Signal transduction – Cell signaling – Signaling cascades – Wnt signaling cascade – Hedgehog signaling – Extracellular matrix – Gene ontologies – Osteoarthritis


Zdroje

1. DALYs GBD, Collaborators H. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1603–58. Epub 2016/10/14. doi: 10.1016/S0140-6736(16)31460-X 27733283; PubMed Central PMCID: PMC5388857.

2. Akeda K, Ohishi K, Masuda K, Bae WC, Takegami N, Yamada J, et al. Intradiscal Injection of Autologous Platelet-Rich Plasma Releasate to Treat Discogenic Low Back Pain: A Preliminary Clinical Trial. Asian Spine J. 2017;11(3):380–9. Epub 2017/07/04. doi: 10.4184/asj.2017.11.3.380 28670405; PubMed Central PMCID: PMC5481592.

3. DePalma MJ, Ketchum JM, Saullo T. What is the source of chronic low back pain and does age play a role? Pain Med. 2011;12(2):224–33. Epub 2011/01/27. doi: 10.1111/j.1526-4637.2010.01045.x 21266006.

4. Ohtori S, Inoue G, Miyagi M, Takahashi K. Pathomechanisms of discogenic low back pain in humans and animal models. Spine J. 2015;15(6):1347–55. Epub 2014/03/25. doi: 10.1016/j.spinee.2013.07.490 24657737.

5. Samartzis D, Karppinen J, Mok F, Fong DY, Luk KD, Cheung KM. A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J Bone Joint Surg Am. 2011;93(7):662–70. Epub 2011/04/08. doi: 10.2106/JBJS.I.01568 21471420.

6. Suzuki H, Kanchiku T, Imajo Y, Yoshida Y, Nishida N, Taguchi T. Diagnosis and Characters of Non-Specific Low Back Pain in Japan: The Yamaguchi Low Back Pain Study. PLoS One. 2016;11(8):e0160454. Epub 2016/08/23. doi: 10.1371/journal.pone.0160454 27548658; PubMed Central PMCID: PMC4993356.

7. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 2006;31(18):2151–61. doi: 10.1097/01.brs.0000231761.73859.2c 16915105.

8. Vo NV, Hartman RA, Patil PR, Risbud MV, Kletsas D, Iatridis JC, et al. Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res. 2016;34(8):1289–306. doi: 10.1002/jor.23195 26890203; PubMed Central PMCID: PMC4988945.

9. Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5(3):120–30. Epub 2003/05/02. doi: 10.1186/ar629 12723977; PubMed Central PMCID: PMC165040.

10. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8. Epub 2007/02/27. doi: 10.1016/j.cell.2007.02.006 17320500.

11. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33 Suppl:245–54. doi: 10.1038/ng1089 12610534.

12. Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018;392(10149):777–86. Epub 2018/08/14. doi: 10.1016/S0140-6736(18)31268-6 30100054.

13. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92. doi: 10.1038/nrg3230 22641018.

14. Jin Z, Liu Y. DNA methylation in human diseases. Genes Dis. 2018;5(1):1–8. Epub 2018/09/28. doi: 10.1016/j.gendis.2018.01.002 30258928; PubMed Central PMCID: PMC6147084.

15. Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012;22(1):50–5. doi: 10.1016/j.gde.2012.02.008 22402447.

16. Bui C, Barter MJ, Scott JL, Xu Y, Galler M, Reynard LN, et al. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. 2012;26(7):3000–11. doi: 10.1096/fj.12-206367 22505473.

17. Cheung KS, Hashimoto K, Yamada N, Roach HI. Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation. Rheumatol Int. 2009;29(5):525–34. doi: 10.1007/s00296-008-0744-z 18941754.

18. de Andres MC, Imagawa K, Hashimoto K, Gonzalez A, Roach HI, Goldring MB, et al. Loss of methylation in CpG sites in the NF-kappaB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum. 2013;65(3):732–42. doi: 10.1002/art.37806 23239081; PubMed Central PMCID: PMC3937961.

19. Hashimoto K, Oreffo RO, Gibson MB, Goldring MB, Roach HI. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 2009;60(11):3303–13. doi: 10.1002/art.24882 19877066; PubMed Central PMCID: PMC2788707.

20. Kim KI, Park YS, Im GI. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res. 2013;28(5):1050–60. doi: 10.1002/jbmr.1843 23225119.

21. Reynard LN, Bui C, Syddall CM, Loughlin J. CpG methylation regulates allelic expression of GDF5 by modulating binding of SP1 and SP3 repressor proteins to the osteoarthritis susceptibility SNP rs143383. Hum Genet. 2014;133(8):1059–73. doi: 10.1007/s00439-014-1447-z 24861163; PubMed Central PMCID: PMC4099533.

22. Roach HI, Yamada N, Cheung KS, Tilley S, Clarke NM, Oreffo RO, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 2005;52(10):3110–24. doi: 10.1002/art.21300 16200590.

23. Scott JL, Gabrielides C, Davidson RK, Swingler TE, Clark IM, Wallis GA, et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis. 2010;69(8):1502–10. doi: 10.1136/ard.2009.119966 20511611; PubMed Central PMCID: PMC3789136.

24. den Hollander W, Meulenbelt I. DNA Methylation in Osteoarthritis. Curr Genomics. 2015;16(6):419–26. doi: 10.2174/1389202916666150817212711 27019616; PubMed Central PMCID: PMC4765529.

25. den Hollander W, Ramos YF, Bos SD, Bomer N, van der Breggen R, Lakenberg N, et al. Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Ann Rheum Dis. 2014;73(12):2208–12. doi: 10.1136/annrheumdis-2014-205980 25261579.

26. Fernandez-Tajes J, Soto-Hermida A, Vazquez-Mosquera ME, Cortes-Pereira E, Mosquera A, Fernandez-Moreno M, et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis. 2014;73(4):668–77. doi: 10.1136/annrheumdis-2012-202783 23505229.

27. Jeffries MA, Donica M, Baker LW, Stevenson ME, Annan AC, Humphrey MB, et al. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis Rheumatol. 2014;66(10):2804–15. doi: 10.1002/art.38762 24980887.

28. Moazedi-Fuerst FC, Hofner M, Gruber G, Weinhaeusel A, Stradner MH, Angerer H, et al. Epigenetic differences in human cartilage between mild and severe OA. J Orthop Res. 2014;32(12):1636–45. doi: 10.1002/jor.22722 25212754.

29. Rushton MD, Reynard LN, Barter MJ, Refaie R, Rankin KS, Young DA, et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 2014;66(9):2450–60. doi: 10.1002/art.38713 24838673; PubMed Central PMCID: PMC4314681.

30. Zhang Y, Fukui N, Yahata M, Katsuragawa Y, Tashiro T, Ikegawa S, et al. Genome-wide DNA methylation profile implicates potential cartilage regeneration at the late stage of knee osteoarthritis. Osteoarthritis Cartilage. 2016;24(5):835–43. doi: 10.1016/j.joca.2015.12.013 26746145.

31. Zhao L, Wang Q, Zhang C, Huang C. Genome-wide DNA methylation analysis of articular chondrocytes identifies TRAF1, CTGF, and CX3CL1 genes as hypomethylated in osteoarthritis. Clin Rheumatol. 2017;36(10):2335–42. doi: 10.1007/s10067-017-3667-9 28470428.

32. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8. Epub 2001/09/25. doi: 10.1097/00007632-200109010-00011 11568697.

33. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics. 2014;30(3):428–30. Epub 2013/12/18. doi: 10.1093/bioinformatics/btt684 24336642; PubMed Central PMCID: PMC3904520.

34. Fortin JP, Triche TJ Jr., Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33(4):558–60. Epub 2016/12/31. doi: 10.1093/bioinformatics/btw691 28035024; PubMed Central PMCID: PMC5408810.

35. Hansen K, Ayree M. minfi: Analyze Illumina’s 450k methylation arrays. R package version 1.8.3. 2011.

36. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44. Epub 2012/06/19. doi: 10.1186/gb-2012-13-6-r44 22703947; PubMed Central PMCID: PMC3446316.

37. Zhou WD, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45(4). ARTN e22 doi: 10.1093/nar/gkw967 WOS:000396055400007. 27924034

38. Nordlund J, Backlin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 2013;14(9):r105. Epub 2013/09/26. doi: 10.1186/gb-2013-14-9-r105 24063430; PubMed Central PMCID: PMC4014804.

39. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3. Epub 2006/05/02. doi: 10.2202/1544-6115.1027 16646809.

40. Wettenhall JM, Smyth GK. limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics. 2004;20(18):3705–6. Epub 2004/08/07. doi: 10.1093/bioinformatics/bth449 15297296.

41. Geeleher P, Hartnett L, Egan LJ, Golden A, Ali RAR, Seoighe C. Gene-set analysis is severely biased when applied to genome-wide methylation data. Bioinformatics. 2013;29(15):1851–7. doi: 10.1093/bioinformatics/btt311 WOS:000322337000002. 23732277

42. Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–8. doi: 10.1093/bioinformatics/btv560 WOS:000368360100018. 26424855

43. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology. 2010;11(2). ARTN R14 doi: 10.1186/gb-2010-11-2-r14 WOS:000276434300013. 20132535

44. Alvarez-Garcia O, Fisch KM, Wineinger NE, Akagi R, Saito M, Sasho T, et al. Increased DNA Methylation and Reduced Expression of Transcription Factors in Human Osteoarthritis Cartilage. Arthritis Rheumatol. 2016;68(8):1876–86. doi: 10.1002/art.39643 26881698; PubMed Central PMCID: PMC4963260.

45. Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Minamide A, et al. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study. Osteoarthritis Cartilage. 2014;22(1):104–10. Epub 2013/11/19. doi: 10.1016/j.joca.2013.10.019 24239943.

46. Benneker LM, Heini PF, Anderson SE, Alini M, Ito K. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J. 2005;14(1):27–35. Epub 2005/02/22. doi: 10.1007/s00586-004-0759-4 15723249; PubMed Central PMCID: PMC3476685.

47. Radek M, Pacholczyk-Sienicka B, Jankowski S, Albrecht L, Grodzka M, Depta A, et al. Assessing the correlation between the degree of disc degeneration on the Pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. Magn Reson Imaging. 2016;34(4):376–80. Epub 2015/12/29. doi: 10.1016/j.mri.2015.12.005 26708032.

48. Rodrigues LM, Oliveira LZ, Pinhal MA. Expression of heparanase isoforms in intervertebral discs classified according to Pfirrmann grading system for disc degeneration. Spine (Phila Pa 1976). 2013;38(13):1112–8. Epub 2013/02/02. doi: 10.1097/BRS.0b013e3182894cf4 23370684.

49. Iida R, Akeda K, Kasai Y, Masuda K, Morimoto R, Sakakibara T, et al. Expression of proteinase-activated receptor-2 in the intervertebral disc. Spine (Phila Pa 1976). 2009;34(5):470–8. doi: 10.1097/BRS.0b013e318195a67d 19247167.

50. Patel KP, Sandy JD, Akeda K, Miyamoto K, Chujo T, An HS, et al. Aggrecanases and aggrecanase-generated fragments in the human intervertebral disc at early and advanced stages of disc degeneration. Spine (Phila Pa 1976). 2007;32(23):2596–603. Epub 2007/11/06. doi: 10.1097/BRS.0b013e318158cb85 17978660.

51. Le Maitre CL, Hoyland JA, Freemont AJ. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther. 2007;9(4):R77. Epub 2007/08/11. doi: 10.1186/ar2275 17688691; PubMed Central PMCID: PMC2206382.

52. Zhao CQ, Wang LM, Jiang LS, Dai LY. The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev. 2007;6(3):247–61. Epub 2007/09/18. doi: 10.1016/j.arr.2007.08.001 17870673.

53. Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans. 2007;35(Pt 4):652–5. doi: 10.1042/BST0350652 17635113.

54. Nakki A, Battie MC, Kaprio J. Genetics of disc-related disorders: current findings and lessons from other complex diseases. Eur Spine J. 2014;23 Suppl 3:S354–63. Epub 2013/07/11. doi: 10.1007/s00586-013-2878-2 23838702.

55. Wang SZ, Rui YF, Lu J, Wang C. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies. Cell Prolif. 2014;47(5):381–90. doi: 10.1111/cpr.12121 25112472.

56. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7–11. Epub 2001/01/03. doi: 10.1172/JCI11830 11134171; PubMed Central PMCID: PMC198552.

57. Nerlich AG, Bachmeier BE, Schleicher E, Rohrbach H, Paesold G, Boos N. Immunomorphological analysis of RAGE receptor expression and NF-kappaB activation in tissue samples from normal and degenerated intervertebral discs of various ages. Ann N Y Acad Sci. 2007;1096:239–48. Epub 2007/04/05. doi: 10.1196/annals.1397.090 17405935.

58. Zotti T, Polvere I, Voccola S, Vito P, Stilo R. CARD14/CARMA2 Signaling and its Role in Inflammatory Skin Disorders. Front Immunol. 2018;9:2167. Epub 2018/10/16. doi: 10.3389/fimmu.2018.02167 30319628; PubMed Central PMCID: PMC6168666.

59. Myouzen K, Kochi Y, Okada Y, Terao C, Suzuki A, Ikari K, et al. Functional variants in NFKBIE and RTKN2 involved in activation of the NF-kappaB pathway are associated with rheumatoid arthritis in Japanese. PLoS Genet. 2012;8(9):e1002949. Epub 2012/10/03. doi: 10.1371/journal.pgen.1002949 23028356; PubMed Central PMCID: PMC3441678.

60. Ni H, Wang XS, Diener K, Yao Z. MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem Biophys Res Commun. 1998;243(2):492–6. Epub 1998/03/03. doi: 10.1006/bbrc.1998.8135 9480836.

61. Westhovens R, Keyser FD, Rekalov D, Nasonov EL, Beetens J, Van der Aa A, et al. Oral administration of GLPG0259, an inhibitor of MAPKAPK5, a new target for the treatment of rheumatoid arthritis: a phase II, randomised, double-blind, placebo-controlled, multicentre trial. Ann Rheum Dis. 2013;72(5):741–4. Epub 2012/11/20. doi: 10.1136/annrheumdis-2012-202221 23161899.

62. Monick MM, Carter AB, Flaherty DM, Peterson MW, Hunninghake GW. Protein kinase C zeta plays a central role in activation of the p42/44 mitogen-activated protein kinase by endotoxin in alveolar macrophages. J Immunol. 2000;165(8):4632–9. Epub 2000/10/18. doi: 10.4049/jimmunol.165.8.4632 11035106.

63. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. Epub 2009/03/13. doi: 10.4161/org.4.2.5851 19279717; PubMed Central PMCID: PMC2634250.

64. De Santis M, Di Matteo B, Chisari E, Cincinelli G, Angele P, Lattermann C, et al. The Role of Wnt Pathway in the Pathogenesis of OA and Its Potential Therapeutic Implications in the Field of Regenerative Medicine. Biomed Res Int. 2018;2018:7402947. Epub 2018/11/10. doi: 10.1155/2018/7402947 30410938; PubMed Central PMCID: PMC6205317.

65. Li Z, Zhang K, Li X, Pan H, Li S, Chen F, et al. Wnt5a suppresses inflammation-driven intervertebral disc degeneration via a TNF-alpha/NF-kappaB-Wnt5a negative-feedback loop. Osteoarthritis Cartilage. 2018;26(7):966–77. Epub 2018/04/16. doi: 10.1016/j.joca.2018.04.002 29656141.

66. Ryu JH, Chun JS. Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J Biol Chem. 2006;281(31):22039–47. Epub 2006/06/07. doi: 10.1074/jbc.M601804200 16754689.

67. Smolders LA, Meij BP, Onis D, Riemers FM, Bergknut N, Wubbolts R, et al. Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies. Arthritis Res Ther. 2013;15(1):R23. Epub 2013/01/31. doi: 10.1186/ar4157 23360510; PubMed Central PMCID: PMC3672710.

68. Ge XP, Gan YH, Zhang CG, Zhou CY, Ma KT, Meng JH, et al. Requirement of the NF-kappaB pathway for induction of Wnt-5A by interleukin-1beta in condylar chondrocytes of the temporomandibular joint: functional crosstalk between the Wnt-5A and NF-kappaB signaling pathways. Osteoarthritis Cartilage. 2011;19(1):111–7. Epub 2010/11/03. doi: 10.1016/j.joca.2010.10.016 21035559.

69. Chen J, Mei Z, Huang B, Zhang X, Liu J, Shan Z, et al. IL-6/YAP1/beta-catenin signaling is involved in intervertebral disc degeneration. J Cell Physiol. 2018. Epub 2018/12/05. doi: 10.1002/jcp.27065 30511395.

70. Yang B, Sun H, Song F, Yu M, Wu Y, Wang J. YAP1 negatively regulates chondrocyte differentiation partly by activating the beta-catenin signaling pathway. Int J Biochem Cell Biol. 2017;87:104–13. Epub 2017/04/26. doi: 10.1016/j.biocel.2017.04.007 28438716.

71. Masuda K, An HS. Growth factors and the intervertebral disc. Spine J. 2004;4(6 Suppl):330S–40S. Epub 2004/11/16. doi: 10.1016/j.spinee.2004.07.028 15541686.

72. Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, et al. Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine (Phila Pa 1976). 2006;31(7):742–54. doi: 10.1097/01.brs.0000206358.66412.7b 16582847.

73. Li TF, O'Keefe RJ, Chen D. TGF-beta signaling in chondrocytes. Front Biosci. 2005;10:681–8. Epub 2004/12/01. doi: 10.2741/1563 15569609; PubMed Central PMCID: PMC2647990.

74. Hu B, Xu C, Cao P, Tian Y, Zhang Y, Shi C, et al. TGF-beta Stimulates Expression of Chondroitin Polymerizing Factor in Nucleus Pulposus Cells Through the Smad3, RhoA/ROCK1, and MAPK Signaling Pathways. J Cell Biochem. 2018;119(1):566–79. Epub 2017/06/14. doi: 10.1002/jcb.26215 28608941.

75. Wu Q, Wang J, Skubutyte R, Kepler CK, Huang Z, Anderson DG, et al. Smad3 controls beta-1,3-glucuronosyltransferase 1 expression in rat nucleus pulposus cells: implications of dysregulated expression in disc disease. Arthritis Rheum. 2012;64(10):3324–33. Epub 2012/06/08. doi: 10.1002/art.34570 22674034; PubMed Central PMCID: PMC3601452.

76. Cheng SY, Yue S. Role and regulation of human tumor suppressor SUFU in Hedgehog signaling. Adv Cancer Res. 2008;101:29–43. Epub 2008/12/06. doi: 10.1016/S0065-230X(08)00402-8 19055941.

77. Tukachinsky H, Lopez LV, Salic A. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol. 2010;191(2):415–28. Epub 2010/10/20. doi: 10.1083/jcb.201004108 20956384; PubMed Central PMCID: PMC2958481.

78. Zhou F, Huang D, Li Y, Hu G, Rao H, Lu Q, et al. Nek2A/SuFu feedback loop regulates Gli-mediated Hedgehog signaling pathway. Int J Oncol. 2017;50(2):373–80. Epub 2016/12/31. doi: 10.3892/ijo.2016.3819 28035348; PubMed Central PMCID: PMC5238777.

79. Stottmann RW, Tran PV, Turbe-Doan A, Beier DR. Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev Biol. 2009;335(1):166–78. Epub 2009/09/08. doi: 10.1016/j.ydbio.2009.08.023 19732765; PubMed Central PMCID: PMC2778284.

80. Pusapati GV, Hughes CE, Dorn KV, Zhang D, Sugianto P, Aravind L, et al. EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. Dev Cell. 2014;28(5):483–96. Epub 2014/03/04. doi: 10.1016/j.devcel.2014.01.021 24582806; PubMed Central PMCID: PMC4027042.

81. Lin AC, Seeto BL, Bartoszko JM, Khoury MA, Whetstone H, Ho L, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med. 2009;15(12):1421–5. Epub 2009/11/17. doi: 10.1038/nm.2055 19915594.

82. Dahia CL, Mahoney E, Wylie C. Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc. PLoS One. 2012;7(4):e35944. Epub 2012/05/05. doi: 10.1371/journal.pone.0035944 22558278; PubMed Central PMCID: PMC3338762.

83. Aota Y, An HS, Homandberg G, Thonar EJ, Andersson GB, Pichika R, et al. Differential effects of fibronectin fragment on proteoglycan metabolism by intervertebral disc cells: a comparison with articular chondrocytes. Spine (Phila Pa 1976). 2005;30(7):722–8. Epub 2005/04/02. doi: 10.1097/01.brs.0000157417.59933.db 15803072.

84. Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int. 2014;2014:648459. Epub 2014/06/25. doi: 10.1155/2014/648459 24959581; PubMed Central PMCID: PMC4052144.

85. Gilchrist CL, Chen J, Richardson WJ, Loeser RF, Setton LA. Functional integrin subunits regulating cell-matrix interactions in the intervertebral disc. J Orthop Res. 2007;25(6):829–40. Epub 2007/02/24. doi: 10.1002/jor.20343 17318895.

86. Gilchrist CL, Francisco AT, Plopper GE, Chen J, Setton LA. Nucleus pulposus cell-matrix interactions with laminins. Eur Cell Mater. 2011;21:523–32. Epub 2011/06/29. 21710443; PubMed Central PMCID: PMC3332080.

87. Loughlin J. Knee osteoarthritis, lumbar-disc degeneration and developmental dysplasia of the hip—an emerging genetic overlap. Arthritis Res Ther. 2011;13(2):108. Epub 2011/05/06. doi: 10.1186/ar3291 21542882; PubMed Central PMCID: PMC3132037.

88. Nagano T, Yonenobu K, Miyamoto S, Tohyama M, Ono K. Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral discs. Spine (Phila Pa 1976). 1995;20(18):1972–8. Epub 1995/09/15. doi: 10.1097/00007632-199509150-00002 8578370.

89. Weng T, Yi L, Huang J, Luo F, Wen X, Du X, et al. Genetic inhibition of fibroblast growth factor receptor 1 in knee cartilage attenuates the degeneration of articular cartilage in adult mice. Arthritis Rheum. 2012;64(12):3982–92. Epub 2012/07/27. doi: 10.1002/art.34645 22833219; PubMed Central PMCID: PMC3690192.

90. Xu W, Xie Y, Wang Q, Wang X, Luo F, Zhou S, et al. A novel fibroblast growth factor receptor 1 inhibitor protects against cartilage degradation in a murine model of osteoarthritis. Sci Rep. 2016;6:24042. Epub 2016/04/05. doi: 10.1038/srep24042 27041213; PubMed Central PMCID: PMC4819196.

91. Yan D, Chen D, Cool SM, van Wijnen AJ, Mikecz K, Murphy G, et al. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther. 2011;13(4):R130. Epub 2011/08/13. doi: 10.1186/ar3441 21835001; PubMed Central PMCID: PMC3239372.

92. Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17. Epub 2017/12/23. doi: 10.1016/j.mad.2017.12.002 29268958.

93. Gopalan S, Carja O, Fagny M, Patin E, Myrick JW, McEwen LM, et al. Trends in DNA Methylation with Age Replicate Across Diverse Human Populations. Genetics. 2017;206(3):1659–74. Epub 2017/05/24. doi: 10.1534/genetics.116.195594 28533441; PubMed Central PMCID: PMC5500158.

94. McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, et al. The epigenetics of sex differences in the brain. J Neurosci. 2009;29(41):12815–23. Epub 2009/10/16. doi: 10.1523/JNEUROSCI.3331-09.2009 19828794; PubMed Central PMCID: PMC2788155.

95. Xia Y, Dai R, Wang K, Jiao C, Zhang C, Xu Y, et al. Sex-differential DNA methylation and associated regulation networks in human brain implicated in the sex-biased risks of psychiatric disorders. Mol Psychiatry. 2019. Epub 2019/04/13. doi: 10.1038/s41380-019-0416-2 30976086.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#