#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Self Multi-Head Attention-based Convolutional Neural Networks for fake news detection


Autoři: Yong Fang aff001;  Jian Gao aff001;  Cheng Huang aff001;  Hua Peng aff002;  Runpu Wu aff003
Působiště autorů: College of Cybersecurity Sichuan University, Chengdu, Sichuan, China aff001;  College of Electronics and Information Engineering Sichuan University, Chengdu, Sichuan, China aff002;  China Information Technology Security Evaluation Center, Beijing 100085, China aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222713

Souhrn

With the rapid development of the internet, social media has become an essential tool for getting information, and attracted a large number of people join the social media platforms because of its low cost, accessibility and amazing content. It greatly enriches our life. However, its rapid development and widespread also have provided an excellent convenience for the range of fake news, people are constantly exposed to fake news and suffer from it all the time. Fake news usually uses hyperbole to catch people’s eyes with dishonest intention. More importantly, it often misleads the reader and causes people to have wrong perceptions of society. It has the potential for negative impacts on society and individuals. Therefore, it is significative research on detecting fake news. In the paper, we built a model named SMHA-CNN (Self Multi-Head Attention-based Convolutional Neural Networks) that can judge the authenticity of news with high accuracy based only on content by using convolutional neural networks and self multi-head attention mechanism. In order to prove its validity, we conducted experiments on a public dataset and achieved a precision rate of 95.5% with a recall rate of 95.6% under the 5-fold cross-validation. Our experimental result indicates that the model is more effective at detecting fake news.

Klíčová slova:

Neural networks – Natural language processing – Deep learning – Social media – Semantics – Convolution – Word embedding – Lexical semantics


Zdroje

1. Biczysko D, Jabłońska MR. Social media marketing tools among Polish public higher education institutions. European Journal of Educational & Social Sciences. 2016;1(1):66–86. Available from: https://dergipark.org.tr/tr/pub/ejees/issue/38819/452444.

2. Lazer DM, Baum MA, Benkler Y, Berinsky AJ, Greenhill KM, Menczer F, et al. The science of fake news. Science. 2018;359(6380):1094–1096. doi: 10.1126/science.aao2998 29590025

3. Vosoughi S, Roy D, Aral S. The spread of true and false news online. Science. 2018;359(6380):1146–1151. doi: 10.1126/science.aap9559 29590045

4. Grinberg N, Joseph K, Friedland L, Swire-Thompson B, Lazer D. Fake news on Twitter during the 2016 US presidential election. Science. 2019;363(6425):374–378. doi: 10.1126/science.aau2706 30679368

5. Zhou X, Zafarani R, Shu K, Liu H. Fake news: Fundamental theories, detection strategies and challenges. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. ACM; 2019. p. 836–837.

6. Shu K, Sliva A, Wang S, Tang J, Liu H. Fake news detection on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter. 2017;19(1):22–36. doi: 10.1145/3137597.3137600

7. Karimi H, Roy P, Saba-Sadiya S, Tang J. Multi-source multi-class fake news detection. In: Proceedings of the 27th International Conference on Computational Linguistics; 2018. p. 1546–1557. Available from: https://www.aclweb.org/anthology/C18-1131/.

8. O’Brien N, Latessa S, Evangelopoulos G, Boix X. The language of fake news: Opening the black-box of deep learning based detectors. 2018.

9. Yang Y, Zheng L, Zhang J, Cui Q, Li Z, Yu PS. TI-CNN: Convolutional neural networks for fake news detection. arXiv preprint arXiv:180600749. 2018;. Available from: https://arxiv.org/abs/1806.00749.

10. Girgis S, Amer E, Gadallah M. Deep Learning Algorithms for Detecting Fake News in Online Text. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES). IEEE; 2018. p. 93–97.

11. Xu C, Paris C, Nepal S, Sparks R. Cross-Target Stance Classification with Self-Attention Networks. arXiv preprint arXiv:180506593. 2018;. Available from: https://arxiv.org/abs/1805.06593.

12. Pérez-Rosas V, Kleinberg B, Lefevre A, Mihalcea R. Automatic detection of fake news. arXiv preprint arXiv:170807104. 2017;. Available from: https://arxiv.org/abs/1708.07104.

13. Feng S, Banerjee R, Choi Y. Syntactic stylometry for deception detection. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2. Association for Computational Linguistics; 2012. p. 171–175. Available from: https://www.aclweb.org/anthology/P12-2034.

14. Afroz S, Brennan M, Greenstadt R. Detecting hoaxes, frauds, and deception in writing style online. In: 2012 IEEE Symposium on Security and Privacy. IEEE; 2012. p. 461–475.

15. Potthast M, Kiesel J, Reinartz K, Bevendorff J, Stein B. A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:170205638. 2017;. Available from: https://arxiv.org/abs/1702.05638.

16. Bastos MT, Mercea D. The Brexit botnet and user-generated hyperpartisan news. Social Science Computer Review. 2019;37(1):38–54. doi: 10.1177/0894439317734157

17. Gupta A, Lamba H, Kumaraguru P, Joshi A. Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22nd international conference on World Wide Web. ACM; 2013. p. 729–736.

18. Jin Z, Cao J, Zhang Y, Zhou J, Tian Q. Novel visual and statistical image features for microblogs news verification. IEEE transactions on multimedia. 2016;19(3):598–608. doi: 10.1109/TMM.2016.2617078

19. Tschiatschek S, Singla A, Gomez Rodriguez M, Merchant A, Krause A. Fake news detection in social networks via crowd signals. In: Companion Proceedings of the The Web Conference 2018. International World Wide Web Conferences Steering Committee; 2018. p. 517–524.

20. Jin Z, Cao J, Zhang Y, Luo J. News Verification by Exploiting Conflicting Social Viewpoints in Microblogs. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16. AAAI Press; 2016. p. 2972–2978. Available from: http://dl.acm.org/citation.cfm?id=3016100.3016318.

21. Mohammad SM, Sobhani P, Kiritchenko S. Stance and sentiment in tweets. ACM Transactions on Internet Technology (TOIT). 2017;17(3):26. doi: 10.1145/3003433

22. Qian F, Gong C, Sharma K, Liu Y. Neural User Response Generator: Fake News Detection with Collective User Intelligence. In: IJCAI; 2018. p. 3834–3840.

23. Ruchansky N, Seo S, Liu Y. Csi: A hybrid deep model for fake news detection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM; 2017. p. 797–806.

24. Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:14090473. 2014;. Available from: https://arxiv.org/abs/1409.0473.

25. Yin W, Schütze H, Xiang B, Zhou B. Abcnn: Attention-based convolutional neural network for modeling sentence pairs. Transactions of the Association for Computational Linguistics. 2016;4:259–272. doi: 10.1162/tacl_a_00097

26. Zhao Z, Wu Y. Attention-Based Convolutional Neural Networks for Sentence Classification. In: INTERSPEECH; 2016. p. 705–709.

27. Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, et al. Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers); 2016. p. 207–212. Available from: https://www.aclweb.org/anthology/P16-2034.

28. Huang X, et al. Attention-based convolutional neural network for semantic relation extraction. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers; 2016. p. 2526–2536. Available from: https://www.aclweb.org/anthology/C16-1238.

29. Yang F, Mukherjee A, Dragut E. Satirical news detection and analysis using attention mechanism and linguistic features. arXiv preprint arXiv:170901189. 2017;. Available from: https://arxiv.org/abs/1709.01189.

30. De Sarkar S, Yang F, Mukherjee A. Attending sentences to detect satirical fake news. In: Proceedings of the 27th International Conference on Computational Linguistics; 2018. p. 3371–3380. Available from: https://www.aclweb.org/anthology/C18-1285.

31. Kim Y. Convolutional neural networks for sentence classification. arXiv preprint arXiv:14085882. 2014;. Available from: https://arxiv.org/abs/1408.5882.

32. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Advances in neural information processing systems; 2017. p. 5998–6008. Available from: http://papers.nips.cc/paper/7181-attention-is-all-you-need.

33. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. doi: 10.1162/neco.1997.9.8.1735 9377276

34. Lin Z, Feng M, Santos CNd, Yu M, Xiang B, Zhou B, et al. A structured self-attentive sentence embedding. arXiv preprint arXiv:170303130. 2017;. Available from: https://arxiv.org/abs/1703.03130.

35. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:14123555. 2014;. Available from: https://arxiv.org/abs/1412.3555.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#