Controls on planktonic foraminifera apparent calcification depths for the northern equatorial Indian Ocean
Autoři:
Stephanie Stainbank aff001; Dick Kroon aff002; Andres Rüggeberg aff001; Jacek Raddatz aff003; Erica S. de Leau aff002; Manlin Zhang aff002; Silvia Spezzaferri aff001
Působiště autorů:
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
aff001; School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom
aff002; Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
aff003; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222299
Souhrn
Within the world’s oceans, regionally distinct ecological niches develop due to differences in water temperature, nutrients, food availability, predation and light intensity. This results in differences in the vertical dispersion of planktonic foraminifera on the global scale. Understanding the controls on these modern-day distributions is important when using these organisms for paleoceanographic reconstructions. As such, this study constrains modern depth habitats for the northern equatorial Indian Ocean, for 14 planktonic foraminiferal species (G. ruber, G. elongatus, G. pyramidalis, G. rubescens, T. sacculifer, G. siphonifera, G. glutinata, N. dutertrei, G. bulloides, G. ungulata, P. obliquiloculata, G. menardii, G. hexagonus, G. scitula) using stable isotopic signatures (δ18O and δ13C) and Mg/Ca ratios. We evaluate two aspects of inferred depth habitats: (1) the significance of the apparent calcification depth (ACD) calculation method/equations and (2) regional species-specific ACD controls. Through a comparison with five global, (sub)tropical studies we found the choice of applied equation and δ18Osw significant and an important consideration when comparing with the published literature. The ACDs of the surface mixed layer and thermocline species show a tight clustering between 73–109 m water depth coinciding with the deep chlorophyll maximum (DCM). Furthermore, the ACDs for the sub-thermocline species are positioned relative to secondary peaks in the local primary production. We surmise that food source plays a key role in the relative living depths for the majority of the investigated planktonic foraminifera within this oligotrophic environment of the Maldives and elsewhere in the tropical oceans.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Physical sciences – Chemistry – Animals – Invertebrates – People and places – Geographical locations – Earth sciences – Mineralogy – Minerals – Ecology and environmental sciences – Marine and aquatic sciences – Plankton – Bodies of water – Asia – Aquatic environments – Oceans – Physical chemistry – Chemical properties – Salinity – Geochemistry – Marine environments – Sea water – Oceanography – Water columns – Calcite – Maldives
Zdroje
1. Schiebel R, Hemleben C. Planktic Foraminifers in the Modern Ocean. Berlin: Springer-Verlag; 2017
2. Rebotim A, Voelker AHL, Jonkers L, Waniek JJ, Meggers H, Schiebel R, et al. Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. Biogeosciences. 2017;14: 827–859. doi: 10.5194/bg-14-827-2017
3. Peeters FJC, Brummer G-JA. The seasonal and vertical distribution of living planktic foraminifera in the NW Arabian Sea. Geol Soc London Spec Publ. 2002;195: 463–497. doi: 10.1144/GSL.SP.2002.195.01.26
4. Ganssen GM, Peeters FJC, Metcalfe B, Anand P, Jung SJA, Kroon D, et al. Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years. Clim Past. 2011;7: 1337–1349. doi: 10.5194/cp-7-1337-2011
5. Anand P, Kroon D, Singh AD, Ganeshram RS, Ganssen G, Elderfield H. Coupled sea surface temperature-seawater δ18O reconstructions in the Arabian Sea at the millennial scale for the last 35 ka. Paleoceanography. 2008;23: PA4207 doi: 10.1029/2007PA001564
6. Ford HL, Ravelo AC, Dekens PS, LaRiviere JP, Wara MW. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state. Geophys Res Lett. 2015;42: 4878–4887. doi: 10.1002/2015GL064215
7. Lynch-Stieglitz J, Polissar PJ, Jacobel AW, Hovan SA, Pockalny RA, Lyle M, et al. Glacial-interglacial changes in central tropical Pacific surface seawater property gradients. Paleoceanogr Paleoclimatology. 2015;30: 423–438. doi: 10.1002/2014PA002746
8. Bunzel D, Schmiedl G, Lindhorst S, Mackensen A, Jesús R, Romahn S, et al. A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea. Clim Past. 2017;13: 1791–1813. doi: 10.5194/cp-13-1791-2017
9. Raddatz J, Nürnberg D, Tiedemann R, Rippert N. Southeastern marginal West Pacific Warm Pool sea-surface and thermocline dynamics during the Pleistocene (2.5–0.5 Ma). Palaeogeogr Palaeoclimatol Palaeoecol. 2017;471: 144–156. doi: 10.1016/j.palaeo.2017.01.024
10. Elderfield H, Vautravers M, Cooper M. The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera. Geochemistry, Geophys Geosystems. 2002;3. doi: 10.1029/2001GC000194
11. Friedrich O, Schiebel R, Wilson PA, Weldeab S, Beer CJ, Cooper MJ, et al. Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and δ13C in nine modern species of planktic foraminifers. Earth Planet Sci Lett. 2012;319–320: 133–145. doi: 10.1016/j.epsl.2011.12.002
12. Birch H, Coxall HK, Pearson PN, Kroon D, O’Regan M. Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals. Mar Micropaleontol. 2013;101: 127–145. doi: doi.org/10.1016/j.marmicro.2013.02.002
13. Anand P, Elderfield H, Conte MH. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography. 2003;18: 1050. doi: 10.1029/2002PA000846
14. Mohtadi M, Oppo DW, Lückge A, DePol-Holz R, Steinke S, Groeneveld J, et al. Reconstructing the thermal structure of the upper ocean: Insights from planktic foraminifera shell chemistry and alkenones in modern sediments of the tropical eastern Indian Ocean. Paleoceanography. 2011;26: PA3219. doi: 10.1029/2011PA002132
15. Farmer CE, Kaplan A, de Menocal PB, Lynch-Stieglitz J. Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens. Paleoceanography. 2007;22: PA3205. doi: 10.1029/2006PA001361
16. Steph S, Regenberg M, Tiedemann R, Mulitza S, Nürnberg D. Stable isotopes of planktonic foraminifera from tropical Atlantic/Caribbean core-tops: Implications for reconstructing upper ocean stratification. Mar Micropaleontol. 2009;71: 1–19. doi: 10.1016/j.marmicro.2008.12.004
17. Rippert N, Nürnberg D, Raddatz J, Maier E, Hathorne E, Bijma J, et al. Constraining foraminiferal calcification depths in the western Pacific warm pool. Mar Micropaleontol. 2016;128: 14–27. doi: 10.1016/j.marmicro.2016.08.004
18. Schlitzer R. Ocean Data View. 2018. Available: odv.awi.de
19. Wang P, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian Z, et al. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev. 2005;24: 595–629. doi: 10.1016/j.quascirev.2004.10.002
20. Spezzaferri S, El Kateb A, Pisapia C, Hallock P. In situ observations of foraminiferal bleaching in the Maldives, Indian Ocean. J Foraminifer Res. 2018;48: 75–84.
21. Betzler C, Hübscher C, Lindhorst S, Reijmer JJGG, Römer M, Droxler AW, et al. Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology. 2009;37: 867–870. doi: 10.1130/G25702A.1
22. Betzler C, Eberli GP, Kroon D, Wright JD, Swart PK, Nath BN, et al. The abrupt onset of the modern South Asian Monsoon winds. Sci Rep. 2016;6: 29838. doi: 10.1038/srep29838 27436574
23. Naik D., Saraswat R, Lea DW, Kurtarkar S., Mackensen A. Last glacial-interglacial productivity and associated changes in the eastern Arabian Sea. Palaeogeogr Palaeoclimatol Palaeoecol. 2017;483: 147–156. doi: 10.1016/j.palaeo.2016.07.014
24. Reolid J, Reolid M, Betzler C, Lindhorst S, Wiesner MG, Lahajnar N. Upper Pleistocene cold-water corals from the Inner Sea of the Maldives: taphonomy and environment. Facies. 2017;63. doi: 10.1007/s10347-016-0491-7
25. Kroon D, Steens T, Troelstra SR. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. In: Prell W, Niitsuma N, editors. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas: Ocean Drilling program; 1991. pp. 257–263.
26. Krahmann G, Krüger K. Physical oceanography during SONNE cruise SO235. PANGAEA. 2018; doi: 10.1594/PANGAEA.887805
27. Quadfasel D. Physical oceanography during RV SONNE cruise SO127, 17 December 1997 to 7 January 1998 from Port Klang to Malé. PANGAEA. Institut für Meereskunde, Universität Hamburg; 2017; doi: 10.1594/PANGAEA.881513
28. Shankar D, Vinayachandran PN, Unnikrishnan AS. The monsoon currents in the north Indian Ocean. Prog Oceanogr. 2002;52: 63–120. doi: 10.1016/S0079-6611(02)00024-1
29. Hemleben C, Spindler M, Anderson RO. Modern Planktonic Foraminifera. New York: Springer-Verlag New York; 1989. doi: 10.1007/978-1-4612-3544-6
30. Betzler C, Eberli GP, Alvarez Zarikian CA, Bialik OM, Blättler CL, Guo JA, et al. Proceedings of the International Ocean Discovery Program, 359. Coll Station TX (International Ocean Discov Program). 2017; doi: 10.14379/iodp.proc.359.102.2017
31. Curry WB, Matthews RK. Paleo-oceanographic utility of oxygen isotopic measurements on planktic foraminifera: Indian Ocean core-top evidence. Palaeogeogr Palaeoclimatol Palaeoecol. 1981;33: 173–191.
32. Darling KF, Wade CM, Kroon D, Brown AJL. Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Mar Micropaleontol. 1997;30: 251–266.
33. Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophys Geosystems. 2003;4: 8407. doi: 10.1029/2003GC000559
34. Martin PA, Lea DW. A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca. Geochemistry, Geophys Geosystems. 2002;3: 8401. doi: 10.1029/2001GC000280
35. Greaves M, Caillon N, Rebaubier H, Bartoli G, Bohaty S, Cacho I, et al. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry, Geophys Geosystems. 2008;9: Q08010. doi: 10.1029/2008GC001974
36. Spezzaferri S, Kucera M, Pearson PN, Wade BS, Rappo S, Poole CR, et al. Fossil and Genetic Evidence for the Polyphyletic Nature of the Planktonic Foraminifera “Globigerinoides”, and Description of the New Genus Trilobatus. PLoS One. 2015;10: e0128108. doi: 10.1371/journal.pone.0128108 26020968
37. Erez J, Luz B. Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta. 1983;47: 1025–1031. doi: 10.1016/0016-7037(83)90232-6
38. Mulitza S, Donner B, Fischer G, Paul A, Pätzold J, Rühlemann C, et al. The South Atlantic Oxygen Isotope Record of Planktonic Foraminifera. In: Wefer G, Mulitza S, Ratmeyer V, editors. The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Berlin: Springer; 2004. pp. 121–142.
39. Kim S-T, O’Neil JR. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta. 1997;61: 3461–3475. doi: 10.1016/S0016-7037(97)00169-5
40. Shackleton NJ. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera Genus Uvigerina: Isotopic changes in the ocean during the last glacial. Colloq Int du CNRS. 1974;219: 203–210.
41. Friedman I, O’Neil JR. Compilation of stable isotope fractionation factors of geochemical interest. Professional Paper. U.S. Government Printing Office; 1977. doi: 10.3133/pp440KK
42. Pearson PN. Oxygen Isotopes in Foraminifera: Overview and Historical Review. In: Ivany LC, Huber BT, editors. Reconstructing Earth’s Deep-time Climate. The Paleontological Society Papers; 2012. pp. 1–38.
43. Hut G. Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations, International Atomic Energy Agency (IAEA). International Atomic Energy Agency. 1987.
44. Epstein S, Buchsbacm J, Lowenstam HA, Ukey HC. Revised carbonate-water isotopic temperature scale. Bull Geol Soc Am. 1953;64: 1315–1326.
45. Duplessy JC, Bé AWH, Blanc PL. Oxygen and carbon isotopic composition and biogeographic distribution of planktonic foraminifera in the Indian Ocean. Palaeogeogr Palaeoclimatol Palaeoecol. 1981;33: 9–46. doi: 10.1016/0031-0182(81)90031-6
46. Srivastava R, Ramesh R, Prakash S, Anilkumar N, Sudhakar M. Oxygen isotope and salinity variations in the Indian sector of the Southern Ocean. Geophys Res Lett. John Wiley & Sons, Ltd; 2007;34: L24603. doi: 10.1029/2007GL031790
47. Dahl KA, Oppo DW. Sea surface temperature pattern reconstructions in the Arabian Sea. Paleoceanography. 2006;21: PA1014. doi: 10.1029/2005PA001162
48. Blättler CL, Higgins JA, Swart PK. Advected glacial seawater preserved in the subsurface of the Maldives carbonate edifice. Geochim Cosmochim Acta. 2019;257: 80–95. doi: doi.org/10.1016/j.gca.2019.04.030
49. Rostek F, Ruhlandt G, Bassinot FC, Muller PJ, Labeyrie LD, Lancelot Y, et al. Reconstructing sea surface temperature and salinity using δ18O and alkenone records. Nature. 1993;364: 319–321. doi: 10.1038/364319a0
50. Tiwari M, Nagoji SS, Kartik T, Drishya G, Parvathy RK, Rajan S. Oxygen isotope-salinity relationships of discrete oceanic regions from India to Antarctica vis-à-vis surface hydrological processes. J Mar Syst. Elsevier B.V.; 2013;113–114: 88–93. doi: doi.org/10.1016/j.jmarsys.2013.01.001
51. LeGrande AN, Schmidt GA. Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett. 2006;33: L12604. doi: 10.1029/2006GL026011
52. Elderfield H, Yu J, Anand P, Kiefer T, Nyland B. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth Planet Sci Lett. 2006;250: 633–649. doi: 10.1016/j.epsl.2006.07.041
53. Yu J, Elderfield H. Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation. Earth Planet Sci Lett. 2008;276: 129–139. doi: 10.1016/j.epsl.2008.09.015
54. Pearson PN, Wade BS. Taxonomy and stable isotope paleoecology of well-preserved planktonic foraminifera from the uppermost Oligocene of Trinidad. J Foraminifer Res. 2009;39: 191–217. doi: 10.2113/gsjfr.39.3.191
55. Singh A, Jani RA, Ramesh R. Spatiotemporal variations of the δ18O-salinity relation in the northern Indian Ocean. Deep Res. Elsevier; 2010;57: 1422–1431. doi: 10.1016/j.dsr.2010.08.002
56. Bouvier-Soumagnac Y, Duplessy J-C. Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment; implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. J Foraminifer Res. 1985;15: 302–320. doi: 10.2113/gsjfr.15.4.302
57. Peeters FJC. The distribution and stable isotope composition of living planktic foraminifera in relation to seasonal changes in the Arabian Sea. Free University, Amsterdam, The Netherlands. 2000.
58. Lynch-Stieglitz J, Curry WB, Slowey N. A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera. Paleoceanography. 1999;14: 360–373. doi: 10.1029/1999PA900001
59. Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta. 1996;60: 803–814. doi: 10.1016/0016-7037(95)00446-7
60. Lea DW, Mashiotta TA, Spero HJ. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim Cosmochim Acta. 1999;63: 2369–2379. doi: 10.1016/S0016-7037(99)00197-0
61. Mashiotta TA, Lea DW, Spero HJ. Glacial–interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg. Earth Planet Sci Lett. Elsevier; 1999;170: 417–432. doi: 10.1016/S0012-821X(99)00116-8
62. Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature. 2000;405: 442–445. doi: 10.1038/35013033 10839536
63. Nürnberg D, Müller A, Schneider RR. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U37K, oxygen isotopes, and foraminiferal transfer function. Paleoceanography. John Wiley & Sons, Ltd; 2000;15: 124–134. doi: 10.1029/1999PA000370
64. Dekens PS, Lea DW, Pak DK, Spero HJ. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation. Geochemistry, Geophys Geosystems. 2002;3. doi: 10.1029/2001GC000200
65. Whitko AN, Hastings DW, Flower BP. Past sea surface temperatures in the tropical South China Sea based on a new foraminiferal Mg calibration. MARsci. 2002; MARSci.2002.01.020101.
66. McConnell MC, Thunell RC. Calibration of the planktonic foraminiferal Mg/Ca paleothermometer: Sediment trap results from the Guaymas Basin, Gulf of California. Paleoceanography. 2005;20: PA2016. doi: 10.1029/2004PA001077
67. Cléroux C, Cortijo E, Anand P, Labeyrie L, Bassinot F, Caillon N, et al. Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction. Paleoceanography. 2008;23: PA3214. doi: 10.1029/2007PA001505
68. Sadekov A, Eggins SM, De Deckker P, Kroon D. Uncertainties in seawater thermometry deriving from intratest and intertest Mg/Ca variability in Globigerinoides ruber. Paleoceanography. 2008;23: PA1215. doi: 10.1029/2007PA001452
69. Regenberg M, Steph S, Nürnberg D, Tiedemann R, Garbe-Schönberg D. Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ18O-calcification temperatures: Paleothermometry for the upper water column. Earth Planet Sci Lett. Elsevier B.V.; 2009;278: 324–336. doi: 10.1016/j.epsl.2008.12.019
70. Hollstein M, Mohtadi M, Rosenthal Y, Moffa Sanchez P, Oppo D, Martínez Méndez G, et al. Stable Oxygen Isotopes and Mg/Ca in Planktic Foraminifera From Modern Surface Sediments of the Western Pacific Warm Pool: Implications for Thermocline Reconstructions. Paleoceanography. 2017;32: 1174–1194. doi: 10.1002/2017PA003122
71. Martin PA, Lea DW, Rosenthal Y, Shackleton NJ, Sarnthein M, Papenfuss T. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth Planet Sci Lett. 2002;198: 193–209. doi: 10.1016/S0012-821X(02)00472-7
72. Healey SL, Thunell RC, Corliss BH. The Mg/Ca-temperature relationship of benthic foraminiferal calcite: New core-top calibrations in the < 4°C temperature range. Earth Planet Sci Lett. 2008;272: 523–530. doi: 10.1016/j.epsl.2008.05.023
73. Lear CH, Rosenthal Y, Slowey N. Benthic foraminiferal Mg/Ca paleothermometry: A revised core-top calibration. Geochim Cosmochim Acta. 2002;66: 3375–3387.
74. Raitzsch M, Kuhnert H, Groeneveld J, Bickert T. Benthic foraminifer Mg/Ca anomalies in South Atlantic core top sediments and their implications for paleothermometry. Geochemistry, Geophys Geosystems. John Wiley & Sons, Ltd; 2008;9: Q05010. doi: 10.1029/2007GC001788
75. Tisserand AA, Dokken TM, Waelbroeck C, Gherardi J-M, Scao V, Fontanier C, et al. Refining benthic foraminiferal Mg/Ca-temperature calibrations using core-tops from the western tropical Atlantic: Implication for paleotemperature estimation. Geochemistry, Geophys Geosystems. John Wiley & Sons, Ltd; 2013;14: 929–946. doi: 10.1002/ggge.20043
76. Lo Giudice Cappelli E, Regenberg M, Holbourn A, Kuhnt W, Garbe-schönberg D, Andersen N. Refining C. wuellerstorfi and H. elegans Mg/Ca temperature calibrations. Mar Micropaleontol. 2015;121: 70–84. doi: org/10.1016/j.marmicro.2015.10.001
77. Kubota Y, Kimoto K, Itaki T, Yokoyama Y, Miyairi Y, Matsuzaki H. Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg/Ca and stable carbon and oxygen isotopes of benthic foraminifera. Clim Past. 2015;11: 803–824. doi: 10.5194/cp-11-803-2015
78. Sadekov A, Eggins SM, De Deckker P, Ninnemann U, Kuhnt W, Bassinot F. Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata. Paleoceanography. 2009;24: PA3201. doi: 10.1029/2008PA001664
79. Darling KF, Wade CM. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol. 2008;67: 216–238. doi: 10.1016/j.marmicro.2008.01.009
80. Pearson PN, Wade BS, Huber BT. Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerinitidae (Dipsidripella, Globigerinita, and Tenuitella). Cushman Found Foraminifer Res Spec Publ. 2018;46: 429–458.
81. Bé AWH, Anderson OR, Faber WW, Caron DA, Be AWH. Sequence of morphological and cytoplasmic changes during gametogenesis in the planktonic foraminifer Globigerinoides sacculifer (Brady). Micropaleontology. 1983;29: 310. doi: 10.2307/1485737
82. Gang L, Qiang L, Guangyan N, Pingping S, Yanzhi F, Liangmin H, et al. Vertical Patterns of Early Summer Chlorophyll a Concentration in the Indian Ocean with Special Reference to the Variation of Deep Chlorophyll Maximum. J Mar Biol. 2012;2012. doi: 10.1155/2012/801248
83. Singh AD, Jung SJA, Darling K, Ganeshram R, Ivanochko T, Kroon D. Productivity collapses in the Arabian Sea during glacial cold phases. Paleoceanography. 2011;26: PA3210. doi: 10.1029/2009PA001923
84. Mulitza S, Wolff T, Pätzold J, Hale W, Wefer G. Temperature sensitivity of planktic foraminifera and its influence on the oxygen isotope record. Mar Micropaleontol. 1998;33: 223–240. doi: 10.1016/S0377-8398(97)00040-6
85. Wang L. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle. Palaeogeogr Palaeoclimatol Palaeoecol. 2000;161: 381–394. doi: 10.1016/S0031-0182(00)00094-8
86. Kuroyanagi A, Tsuchiya M, Kawahata H, Kitazato H. The occurrence of two genotypes of the planktonic foraminifer Globigerinoides ruber (white) and paleo-environmental implications. Mar Micropaleontol. 2008;68: 236–243. doi: 10.1016/j.marmicro.2008.04.004
87. Numberger L, Hemleben C, Hoffmann R, Mackensen A, Schulz H, Wunderlich J-M, et al. Habitats, abundance patterns and isotopic signals of morphotypes of the planktonic foraminifer Globigerinoides ruber (d’Orbigny) in the eastern Mediterranean Sea since the Marine Isotopic Stage 12. Mar Micropaleontol. Elsevier B.V.; 2009;73: 90–104. doi: 10.1016/j.marmicro.2009.07.004
88. Steinke S, Chiu H-Y, Yu P-S, Shen C-C, Löwemark L, Mii H-S, et al. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions. Geochemistry, Geophys Geosystems. 2005;6: Q11005. doi: 10.1029/2005GC000926
89. Aurahs R, Treis Y, Darling K, Kucera M. A revised taxonomic and phylogenetic concept for the planktonic foraminifer species Globigerinoides ruber based on molecular and morphometric evidence. Mar Micropaleontol. 2011;79: 1–14. doi: 10.1016/j.marmicro.2010.12.001
90. Bijma J, Hemleben C. Population dynamics of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central Red Sea. Deep Sea Res Part I Oceanogr Res Pap. 1994;41: 485–510. doi: 10.1016/0967-0637(94)90092-2
91. Bé AWH, Bishop JKB, Sverdlove MS, Gardner WD. Standing stock, vertical distribution and flux of planktonic foraminifera in the Panama Basin. Mar Micropaleontol. 1985;9: 307–333. doi: 10.1016/0377-8398(85)90002-7
92. Bijma J, Hemleben C, Huber BT, Erlenkeuser H, Kroon D. Experimental determination of the ontogenetic stable isotope variability in two morphotypes of Globigerinella siphonifera (d’Orbigny). Mar Micropaleontol. 1998;35: 141–160. doi: 10.1016/S0377-8398(98)00017-6
93. Spero HJ, Parker SL. Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. J Foraminifer Res. 1985;15: 273–281. doi: 10.2113/gsjfr.15.4.273
94. Gastrich MD. Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera. J Phycol. 1987;23: 623–632. doi: 10.1111/j.1529-8817.1987.tb04215.x
95. Kroon D, Ganssen G. Northern Indian Ocean upwelling cells and the stable isotope composition of living planktonic foraminifers. Deep Sea Res. 1989;36: 1219–1236. doi: 10.1016/0198-0149(89)90102-7
96. Aze T, Ezard THG, Purvis A, Coxall HK, Stewart DRM, Wade BS, et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol Rev. 2011;86: 900–927. doi: 10.1111/j.1469-185X.2011.00178.x 21492379
97. Ravelo AC, Fairbanks RG, Philander SGH. Reconstructing tropical Atlantic hydrography using planktontic foraminifera and an ocean model. Paleoceanography. 1990;5: 409–431. doi: 10.1029/PA005i003p00409
98. Bé AW., Tolderlund D. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. In: Funnel B., Riedel W., editors. The Micropaleontology of Oceans. London: Cambridge University Press; 1971. pp. 105–149.
99. Coxall HK, Spezzaferri S. Taxonomy, biostratigraphy and phylogeny of Oligocene Catapsydrax, Globorotaloides and Protentelloides. Cushman Found Foraminifer Res Spec Publ. 2018;46: 79–124.
100. Baumfalk YA, Troelstra SR, Ganssen G, Van Zanen MJL. Phenotypic variation of Globorotalia scitula (foraminiferida) as a response to Pleistocene climatic fluctuations. Mar Geol. Elsevier; 1987;75: 231–240. doi: 10.1016/0025-3227(87)90106-X
101. Ortiz JD, Mix AC, Rugh W, Watkins JM, Collier RW. Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria. Geochim Cosmochim Acta. 1996;60: 4509–4523. doi: 10.1016/S0016-7037(96)00256-6
102. Spezzaferri S. Planktonic foraminiferal paleoclimatic implications across the Oligocene-Miocene transition in the oceanic record (Atlantic, Indian and South Pacific). Palaeogeogr Palaeoclimatol Palaeoecol. 1995;114: 43–74.
103. Rippert N, Max L, Mackensen A, Cacho I, Povea P, Tiedemann R. Alternating Influence of Northern Versus Southern-Sourced Water Masses on the Equatorial Pacific Subthermocline During the Past 240 ka. Paleoceanography. 2017;32: 1256–1274. doi: 10.1002/2017PA003133
104. Schiebel R, Hemleben C. Interannual variability of planktic foraminiferal populations and test flux in the eastern North Atlantic Ocean (JGOFS). Deep Sea Res. 2000;47: 1809–1852. doi: 10.1016/S0967-0645(00)00008-4
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania