Distinguishing mild cognitive impairment from healthy aging and Alzheimer’s Disease: The contribution of the INECO Frontal Screening (IFS)
Autoři:
Helena S. Moreira aff001; Ana Sofia Costa aff002; Álvaro Machado aff002; São Luís Castro aff001; César F. Lima aff001; Selene G. Vicente aff001
Působiště autorů:
Centre for Psychology at University of Porto, Porto, Portugal
aff001; Neurocognition Unit, Department of Neurology, Hospital de Braga, Braga, Portugal
aff002; Department of Neurology, RWTH Aachen University, Aachen, Germany
aff003; JARA Institute Molecular Neuroscience and Neuroimaging, Aachen, Germany
aff004; Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221873
Souhrn
Executive functions are affected differently in healthy aging, Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD), and evaluating them is important for differential diagnosis. The INECO Frontal Screening (IFS) is a brief neuropsychological screening tool, developed to assess executive dysfunction in neurodegenerative disorders. Goals: We aimed to examine whether and how MCI patients can be differentiated from cognitively healthy controls (HC) and mild to moderate AD patients based on IFS performance. We also explored how IFS scores are associated with age, years of education, and depressive/anxious symptoms (as assessed by the Hospital Anxiety and Depression Scale). Method: IFS total scores were compared between 26 HC, 32 MCI and 21 mild to moderate AD patients. The three groups were matched for age and education. The Area Under the Curve (AUC) was analyzed and optimal cut-offs were determined. Results: Healthy participants had higher IFS scores than both clinical groups, and MCI patients had higher scores than AD patients. IFS showed high diagnostic accuracy for the detection of MCI (AUC = .89, p < .001) and AD (AUC = .99, p < .001), and for the differentiation between the clinical groups (AUC = .76, p < .001). We provide optimal cut-offs for the identification of MCI and AD and for their differentiation. We also found that, in general, higher education predicted higher IFS scores (no associations with age and depressive/anxious symptoms were observed). Altogether, these findings indicate that evaluating executive functions with the IFS can be valuable for the identification of MCI, a high-risk group for dementia, and for differentiating this condition from healthy aging and AD.
Klíčová slova:
Biology and life sciences – Neuroscience – Cognitive science – Learning and memory – Psychology – Social sciences – Medicine and health sciences – Diagnostic medicine – Neurology – Cognitive neurology – Cognitive impairment – Cognitive neuroscience – Mental health and psychiatry – Dementia – Alzheimer's disease – Neurodegenerative diseases – Cognition – Memory – Mood disorders – Depression – Neuropsychological testing – Working memory – Neuropsychology
Zdroje
1. Goldstein S, Naglieri JA, Princiotta D, Otero TM. Introduction: A History of Executive Functioning as a Theoretical and Clinical Construct. In: Goldstein S, Naglieri JÁ, editors. Handbook of Executive Functioning. New York: Springer; 2013. pp.24–44.
2. Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 2014 May 42; 180–92. doi: 10.1016/j.neubiorev.2014.02.005 24568942
3. Robinson H, Calamia M, Gläscher J, Bruss J, Tranel D. Neuroanatomical Correlates of Executive Functions: A Neuropsychological Approach Using the EXAMINER Battery. J Int Neuropsychol Soc. 2013 Jun 13;20(01):52–63. doi: 10.1017/S135561771300060X 23759126
4. Burzynska AZ, Nagel IE, Preuschhof C, Gluth S, Bäckman L, Li S-C, et al. Cortical thickness is linked to executive functioning in adulthood and aging. Hum Brain Mapp. 2011 Jul 7;33(7):1607–1620. doi: 10.1002/hbm.21311 21739526
5. Marvel CL, Desmond JE. Functional Topography of the Cerebellum in Verbal Working Memory. Neuropsychology Rev. 2010 Jun 22;20(3):271–9. doi: 10.1007/s11065-010-9137-7 20563894
6. Hirsiger S, Koppelmans V, Mérillat S, Erdin C, Narkhede A, Brickman AM, et al. Executive Functions in Healthy Older Adults Are Differentially Related to Macro- and Microstructural White Matter Characteristics of the Cerebral Lobes. Front Aging Neurosci. 2017 Nov 30;9. doi: 10.3389/fnagi.2017.00373 29249957
7. Reuter-Lorenz PA, Festini SB, Jantz TK. Executive Functions and Neurocognitive Aging. In: Schaie KW, Willis SL, editors. Handbook of the Psychology of Aging. Oxford: Elsevier; 2016. pp. 245–262.
8. Aging Verhaeghen P. and Executive Control: Reports of a Demise Greatly Exaggerated. Curr Dir Psychol Sci. 2011 May 24;20(3):174–80. doi: 10.1177/0963721411408772
9. Fjell AM, Sneve MH, Grydeland H, Storsve AB, Walhovd KB. The Disconnected Brain and Executive Function Decline in Aging. Cereb. Cortex. 2016 Apr 12. doi: 10.1093/cercor/bhw082 27073220
10. Kirova A-M, Bays RB, Lagalwar S. Working Memory and Executive Function Decline across Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. Biomed Res Int. 2015;2015:1–9. doi: 10.1155/2015/748212 26550575
11. Amieva H, Phillips L, Della Sala S. Behavioral dysexecutive symptoms in normal aging. Brain Cogn. 2003 Nov;53(2):129–32. doi: 10.1016/s0278-2626(03)00094-0 14607132
12. Espinosa A, Alegret M, Boada M, Vinyes SG, Valero S, Martinéz-Lage P, et al. Ecological assessment of executive functions in mild cognitive impairment and mild Alzheimer’s disease. J Int Neuropsychol Soc 2009 Jul 2;15(05):751. doi: 10.1017/s135561770999035x 19570310
13. Angel L, Bastin C, Genon S, Salmon E, Fay S, Balteau E, et al. Neural correlates of successful memory retrieval in aging: Do executive functioning and task difficulty matter? Brain Res. 2016 Jan;1631:53–71. doi: 10.1016/j.brainres.2015.10.009 26541580
14. Princiotta D, DeVries M, Goldstein S. Executive Functioning as a Mediator of Age-Related Cognitive Decline in Adults. In: Goldstein S, Naglieri JÁ, editors. Handbook of Executive Functioning. New York: Springer; 2013.pp. 143–155
15. Fjell AM, Walhovd KB. Structural Brain Changes in Aging: Courses, Causes and Cognitive Consequences. Rev Neurosci. 2010 Jan;21(3). doi: 10.1515/revneuro.2010.21.3.187
16. Fernandez-Ruiz J, Peltsch A, Alahyane N, Brien DC, Coe BC, Garcia A, et al. Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task. Neuroimage. 2018 Jan;165:92–101. doi: 10.1016/j.neuroimage.2017.10.001 28988829
17. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild Cognitive Impairment. Arch Neurol. 1999 Mar 1;56(3):303. doi: 10.1001/archneur.56.3.303 10190820
18. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild Cognitive Impairment: ten years later. Arch Neurol. 2009 Dec 1;66(12). doi: 10.1001/archneurol.2009.266 20008648
19. Bermejo-Pareja F, Contador I, Trincado R, Lora D, Sánchez-Ferro Á, Mitchell AJ, et al. Prognostic Significance of Mild Cognitive Impairment Subtypes for Dementia and Mortality: Data from the NEDICES Cohort. J Alzheimers Dis. 2016 Feb 2;50(3):719–31. doi: 10.3233/JAD-150625 26757038
20. Roberts RO, Knopman DS, Mielke MM, Cha RH, Pankratz VS, Christianson TJH, et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology. 2013 Dec 18;82(4):317–325. doi: 10.1212/WNL.0000000000000055 24353333
21. Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014 Mar;275(3):214–28. doi: 10.1111/joim.12190 24605806
22. Monastero R, Cicero CE, Baschi R, Davì M, Luca A., Restivo V, et al. … Mild cognitive impairment in Parkinson's disease: the Parkinson's disease cognitive study (PACOS). J Neurol.2018 May; 265 (5):1050–1058. doi: 10.1007/s00415-018-8800-4 29478221
23. Domoto-Reilly K, Sapolsky D, Negreira A, Brickhouse M, Dickerson B. Mild cognitive impairment of frontotemporal lobar degeneration subtypes: Clinical and imaging characteristics. Alzheimers Dement. 2012 Jul;8(4):P624. doi: 10.1016/j.jalz.2012.05.1662
24. Consoli A, Pasi M, Pantoni L. Vascular mild cognitive impairment: concept, definition, and directions for future studies. Aging Clin Exp Res. 2012 Apr;24(2):113–116. doi: 10.1007/bf03325158 22842831
25. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004 Aug 24; 256: 240–246. doi: 10.1111/j.1365-2796.2004.01380.x 15324367
26. Brandt J, Aretouli E, Neijstrom E, Samek J, Manning K, Albert MS, et al. Selectivity of executive function deficits in mild cognitive impairment. Neuropsychology. 2009;23(5):607–618. doi: 10.1037/a0015851 19702414
27. Putcha D, Tremont G. Predictors of independence in instrumental activities of daily living: Amnestic versus nonamnestic MCI. J Clin Exp Neuropsychol. 2016 May 31;38(9):991–1004. doi: 10.1080/13803395.2016.1181716 27240585
28. Rosenberg PB, Mielke MM, Appleby B, Oh E, Leoutsakos J-M, Lyketsos CG. Neuropsychiatric symptoms in MCI subtypes: the importance of executive dysfunction. Int J Geriatr Psychiatry. 2010 Sep 15;26(4):364–372. doi: 10.1002/gps.2535 20845402
29. Hessen E, Reinvang I, Eliassen CF, Nordlund A, Gjerstad L, Fladby T, et al. The Combination of Dysexecutive and Amnestic Deficits Strongly Predicts Conversion to Dementia in Young Mild Cognitive Impairment Patients: A Report from the Gothenburg-Oslo MCI Study. Dement Geriatr Cogn Dis Extra. 2014 Apr 9;4(1):76–85. doi: 10.1159/000360282 24847346
30. Baudic S, Barba GD, Thibaudet MC, Smagghe A, Rem P, Traykov L. Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Arch Clin Neuropsychol. 2006 Jan; 21: 15–21. doi: 10.1016/j.acn.2005.07.002 16125364
31. Bejanin A, Schonhaut DR, La Joie R, Kramer JH, Baker SL, Sosa N. et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain. 2017 Oct 7;140: 3286–3300. doi: 10.1093/brain/awx243 29053874
32. Amieva H, Phillips LH, Della Salla S, Henry JD. Inhibitory functioning in Alzheimer Disease. Brain. 2004 May 1;127 (5): 949–964. doi: 10.1093/brain/awh045 14645147
33. Moreira H, Lima C, Vicente S. Examining Executive Dysfunction with the Institute of Cognitive Neurology (INECO) Frontal Screening (IFS). Normative Values from a Healthy Sample and Clinical Utility in Alzheimer’s Disease. J Alzheimers Dis. 2014 March 25;42(1): 261–273. doi: 10.3233/JAD-132348 24840570
34. Belleville S, Chertkow H, Gauthier S. Working memory and control of attention in persons with Alzheimer’s disease and mild cognitive impairment. Neuropsychology. 2007 jul; 21(4): 458–469. doi: 10.1037/0894-4105.21.4.458 17605579
35. Firbank M, Kobeleva X, Cherry G, Killen A, Gallagher P, Burn DJ, et al. Neural correlates of attention‐executive dysfunction in lewy body dementia and Alzheimer’s disease. Hum Brain Mapp. 2016 Mar;37(3):1254–70. doi: 10.1002/hbm.23100 26705763
36. Stokholm J, Vogel A, Gade A, Waldemar G. Heterogeneity in Executive Impairment in Patients with Very Mild Alzheimer’s Disease. Dement Geriatr Cogn Disord 2006;22(1):54–9. doi: 10.1159/000093262 16682794
37. Chen ST, Sultzer DL, Hinkin CH. Executive dysfunction in Alzheimer’s: association with neuropsychiatric symptoms and functional impairment. J Neuropsychiatry Clin Neurosci. 1998 Nov;10 (4): 426–432. doi: 10.1176/jnp.10.4.426 9813788
38. Cummings JL. Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurological basis. Neurobiol Aging. 2000 Nov; 21(6): 845–861. doi: 10.1016/S0197-4580(00)00183-4 11124429
39. Torralva T, Roca M, Gleichgerrch E, López P, Manes F. INECO Frontal Screening (IFS): A brief, sensitive, and specific tool to assess executive functions in dementia. J Int Neuropsychol Soc. 2009 Jul 28;15(05):777. doi: 10.1017/s1355617709990415 19635178
40. Moreira HS, Costa AS, Castro SL, Lima CF, Vicente SG. Assessing Executive Dysfunction in Neurodegenerative Disorders: A Critical Review of Brief Neuropsychological Tools. Front Aging Neurosci. 2017 Nov 9;9. doi: 10.3389/fnagi.2017.00369 29170636
41. Fiorentino N, Gleichgerrcht E, Roca M, Cetkovich M, Manes F, Torralva T. The INECO Frontal Screening tool differentiates behavioral variant—frontotemporal dementia (bv-FTD) from major depression. Dement Neuropsychol. 2013 Mar;7(1):33–39. doi: 10.1590/S1980-57642013DN70100006 29213817
42. Gleichgerrcht E, Roca M, Manes F, Torralva T. Comparing the clinical usefulness of the Institute of Cognitive Neurology (INECO) Frontal Screening (IFS) and the Frontal Assessment Battery (FAB) in frontotemporal dementia. J Clin Exp Neuropsychol. 2011 Jul 14;33(9):997–1004. doi: 10.1080/13803395.2011.589375 21923634
43. Custodio N, Herrera-Perez E, Lira D, Roca M, Manes F, Baéz S, Torralva T. Evaluation of the INECO Frontal Screening and the Frontal Assessment Battery in Peruvian patients with Alzheimer's disease and behavioral variant Frontotemporal dementia. eNeurologicalSci, 2016 Dec; 5: 25–29. doi: 10.1016/j.ensci.2016.11.001 29430554
44. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc. 2005 Apr;53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x 15817019
45. Freitas S, Simões MR, Alves L, Santana I. Montreal Cognitive Assessment: Validation Study for Mild Cognitive Impairment and Alzheimer Disease. Alzheimer Dis Assoc Disord. 2013;27(1):37–43. doi: 10.1097/WAD.0b013e3182420bfe 22193353
46. Montiel JM, Cecato JF, Bartholomeu D, Martinelli JE. Evaluation of Montreal cognitive assessment for the differential diagnosis of mild cognitive impairment and Alzheimer’s disease in elderly patients with more than 5 years of schooling: Data from a Brazilian sample. Adv Aging Res. 2013;2(4):121–129. doi: 10.4236/aar.2013.24018
47. Ihnen J, Antivilo A, Muñoz-Neira C, Slachevsky A. Chilean version of the INECO Frontal Screening (IFS-Ch): Psychometric properties and diagnostic accuracy. Dement Neuropsychol. 2013 Mar;7(1):40–47. doi: 10.1590/S1980-57642013DN70100007 29213818
48. Sierra Sanjurjo N, Saraniti AB, Gleichgerrcht E, Roca M, Manes F, Torralva T. The IFS (INECO Frontal Screening) and level of education: Normative data. Appl Neuropsychol Adult. 2018 Feb 12;1–9. doi: 10.1080/23279095.2018.1427096 29432039
49. Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. American Psychological Association. 1983; 67(6): 361–370. doi: 10.1037/t03589-000
50. Freitas S, Simões MR, Alves L, Santana I. The Relevance of Sociodemographic and Health Variables on MMSE Normative Data. Appl Neuropsychol Adult. 2014 Dec 22;22(4):311–319. doi: 10.1080/23279095.2014.926455 25531579
51. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging and the Alzheimer’s Association workgroup. Alzheimer Dem. 2011; 7: 1–7. doi: 10.1016/j.jalz.2011.03.005 21514250
52. Costa AS, Rocha S, Machado Á. Association of retrospective time estimation and severity of cognitive impairment. J Clin Exp Neuropsycho. 2016 May;38(8):853–860. doi: 10.1080/13803395.2016.1167841 27132467
53. Van Cauwenberghe C., Van Broeckhoven C., & Sleegers K. (2016). The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genetics in Medicine, 18(5), 421. doi: 10.1038/gim.2015.117 26312828
54. Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatr. 1982 Sep;139(9):1136–1139. doi: 10.1176/ajp.139.9.1136 7114305
55. Doody RS, Massman P, Dunn JK. A Method for Estimating Progression Rates in Alzheimer Disease. Arch Neurol. 2001 Mar 1;58(3). doi: 10.1001/archneur.58.3.449 11255449
56. Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of Neuropsychiatric Symptoms in Dementia and Mild Cognitive Impairment. JAMA. 2002 Sep 25;288(12):1475. doi: 10.1001/jama.288.12.1475 12243634
57. Modrego PJ, Ferrández J. Depression in Patients With Mild Cognitive Impairment Increases the Risk of Developing Dementia of Alzheimer Type. Arch Neurol. 2004 Aug 1;61(8). doi: 10.1001/archneur.61.8.1290 15313849
58. Aznar S, Knudsen GM. Depression and Alzheimer’s disease: Is stress the initiating factor in a common neuropathological cascade. J Alzheimers Dis. 2011 Feb 26;23: 177–193. doi: 10.3233/JAD-2010-100390 21098983
59. Dubois B., Slachevsky A., Litvan I., & Pillon B. F. A. B. (2000). The FAB: a frontal assessment battery at bedside. Neurology, 55(11), 1621–1626. doi: 10.1212/wnl.55.11.1621 11113214
60. Curran PJ, West SG, Finch JF. The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychol Methods. 1996 Mar;1(1):16–29. doi: 10.1037/1082-989x.1.1.16
61. Statistics Portugal (2012). Censos 2011: Resultados Definitivos–Portugal. [Censos 2011: Definitive Results—Portugal]. Instituto Nacional de Estatística, Lisboa.
62. Franco-Marina F, García-González JJ, Wagner-Echeagaray F, Gallo J, Ugalde O, Sánchez-García S, et al. The Mini-mental State Examination revisited: ceiling and floor effects after score adjustment for educational level in an aging Mexican population. Int Psychogeriatr. 2009 Sep 7;22(01):72. doi: 10.1017/s1041610209990822 19735592
63. Huey ED, Manly JJ, Tang M-X, Schupf N, Brickman AM, Manoochehri M, et al. Course and etiology of dysexecutive MCI in a community sample. Alzheimers Dem. 2013 Nov;9(6):632–639. doi: 10.1016/j.jalz.2012.10.014 23452959
64. Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of the Addenbrooke's Cognitive Examination III in frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord. 2013;36(3–4):242–250. doi: 10.1159/000351671 23949210
65. Kray J, Eber J, Lindenberger U. Age differences in executive functioning across the lifespan: The role of verbalization in task preparation. Acta Psycho. 2004 Feb;115(2–3):143–65. doi: 10.1016/j.actpsy.2003.12.001 14962398
66. Isingrini M, Angel L, Fay S, Taconnat L, Lemaire P, Bouazzaoui B. Age-Related Differences in the Reliance on Executive Control in Working Memory: Role of Task Demand. Antal A, editor. PLOS ONE. 2015 Dec 23;10(12):e0145361. doi: 10.1371/journal.pone.0145361 26700019
67. Appollonio I, Leone M, Isella V, Piamarta F, Consoli T, Villa ML, et al. The Frontal Assessment Battery (FAB): normative values in an Italian population sample. Neurol Sci. 2005 Jun;26(2):108–116. doi: 10.1007/s10072-005-0443-4 15995827
68. Branco LD, Cotrena C, Pereira N, Kochhann R, Fonseca RP. Verbal and visuospatial executive functions in healthy elderly: The impact of education and frequency of reading and writing. Dement Neuropsychol. 2014 Jun;8(2):155–161. doi: 10.1590/S1980-57642014DN82000011 29213897
69. Roldán-Tapia MD, Cánovas R, León I, García-Garcia J. Cognitive Vulnerability in Aging May Be Modulated by Education and Reserve in Healthy People. Front Aging Neurosci. 2017 Oct 24;9. doi: 10.3389/fnagi.2017.00340 29118710
70. Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA, Alzheimer's Disease Neuroimaging Initiative. Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):300–8. doi: 10.1016/j.jalz.2010.04.005 21575871
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania