Reliable and robust method for abdominal muscle mass quantification using CT/MRI: An explorative study in healthy subjects
Autoři:
Jisuk Park aff001; Jea Ryung Gil aff001; Youngbin Shin aff001; Sang Eun Won aff001; Jimi Huh aff001; Myung-Won You aff001; Hyo Jung Park aff001; Yu Sub Sung aff001; Kyung Won Kim aff001
Působiště autorů:
Department of Radiology, Asan Image Metrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
aff001; Department of Radiology, VHS Medical Center, Seoul, Korea
aff002; Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
aff003; Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
aff004; Department of Radiology, Kyung Hee University Hospital, Seoul, Korea
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222042
Souhrn
Background
Quantification of abdominal muscle mass by cross-sectional imaging has been increasingly used to diagnose sarcopenia; however, the technical method for quantification has not been standardized yet. We aimed to determine an optimal method to measure the abdominal muscle area.
Methods
Among 50 consecutive subjects who underwent abdominal CT and MRI for possible liver donation, total abdominal muscle area (TAMA) and total psoas muscle area (TPA) at the L3 inferior endplate level were measured by two blinded readers. Inter-scan agreement between CT and MRI and inter-reader agreement between the two readers were evaluated using intraclass correlation coefficient (ICC) and within-subject coefficient of variation (WSCV). To evaluate the effect of measurement level, one reader measured TAMA and TPA at six levels from the L2 to L4 vertebral bodies.
Results
TAMA was a more reliable biomarker than TPA in terms of inter-scan agreement (ICC: 0.928 vs. 0.788 for reader 1 and 0.853 vs. 0.821 for reader 2, respectively; WSCV: 8.3% vs. 23.4% for reader 1 and 10.4% vs. 22.3% for reader 2, respectively) and inter-reader agreement (ICC: 0.986 vs. 0.886 for CT and 0.865 vs. 0.669 for MRI, respectively; WSCV: 8.2% vs. 16.0% for CT and 11.6% vs. 29.7% for MRI, respectively). In terms of the measurement level, TAMA did not differ from the L2inf to L4inf levels, whereas TPA increased with a decrease in measurement level.
Conclusions
TAMA is a better biomarker than TPA in terms of inter-scan and inter-reader agreement and robustness to the measurement level. CT was a more reliable imaging modality than MRI. Our results support the use of TAMA measured by CT as a standard biomarker for abdominal muscle area measurement.
Klíčová slova:
Biology and life sciences – Biochemistry – Research and analysis methods – Neuroscience – Anatomy – Medicine and health sciences – Pathology and laboratory medicine – Diagnostic medicine – Signs and symptoms – Lipids – Fats – Imaging techniques – Biomarkers – Neuroimaging – Diagnostic radiology – Magnetic resonance imaging – Radiology and imaging – Musculoskeletal system – Tomography – Sarcopenia – Muscles – Computed axial tomography – Bioassays and physiological analysis – Muscle analysis – Abdominal muscles – Morphometry
Zdroje
1. Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J Am Med Dir Assoc. 2016;17(8):675–7. Epub 2016/07/30. doi: 10.1016/j.jamda.2016.06.001 27470918.
2. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101. Epub 2014/01/28. doi: 10.1016/j.jamda.2013.11.025 24461239.
3. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23. Epub 2010/04/16. doi: 10.1093/ageing/afq034 20392703; PMCID: PMC2886201.
4. Jaap K, Hunsinger M, Dove J, McGinty K, Stefanowicz E, Fera J, et al. Morphometric predictors of morbidity after pancreatectomy. Am Surg. 2016;82(12):1221–6. Epub 2017/02/25. 28234188.
5. Joglekar S, Mezhir JJ. Response to letter to editor by Safer et al. J Surg Oncol. 2015;112(1):117. Epub 2015/07/16. doi: 10.1002/jso.23968 26175340.
6. Lee CS, Cron DC, Terjimanian MN, Canvasser LD, Mazurek AA, Vonfoerster E, et al. Dorsal muscle group area and surgical outcomes in liver transplantation. Clin Transplant. 2014;28(10):1092–8. Epub 2014/07/22. doi: 10.1111/ctr.12422 25040933; PMCID: PMC4205192.
7. DiMartini A, Cruz RJ Jr., Dew MA, Myaskovsky L, Goodpaster B, Fox K, et al. Muscle mass predicts outcomes following liver transplantation. Liver Transpl. 2013;19(11):1172–80. Epub 2013/08/21. doi: 10.1002/lt.23724 23960026; PMCID: PMC4382961.
8. Montano-Loza AJ, Meza-Junco J, Baracos VE, Prado CM, Ma M, Meeberg G, et al. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transpl. 2014;20(6):640–8. Epub 2014/03/29. doi: 10.1002/lt.23863 24678005.
9. Hasselager R, Gogenur I. Core muscle size assessed by perioperative abdominal CT scan is related to mortality, postoperative complications, and hospitalization after major abdominal surgery: a systematic review. Langenbecks Arch Surg. 2014;399(3):287–95. Epub 2014/02/19. doi: 10.1007/s00423-014-1174-x 24535479.
10. Barret M, Berthaud C, Taieb J. Sarcopenia: a concept of growing importance in the management of colorectal cancer. Presse Med. 2014;43(6 Pt 1):628–32. Epub 2014/05/27. doi: 10.1016/j.lpm.2013.12.021 24857256.
11. Yip C, Goh V, Davies A, Gossage J, Mitchell-Hay R, Hynes O, et al. Assessment of sarcopenia and changes in body composition after neoadjuvant chemotherapy and associations with clinical outcomes in oesophageal cancer. Eur Radiol. 2014;24(5):998–1005. Epub 2014/02/19. doi: 10.1007/s00330-014-3110-4 24535076.
12. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. Epub 2011/02/08. doi: 10.1016/S1470-2045(10)70218-7 21296615.
13. Fosbol MØ, Zerahn B. Contemporary methods of body composition measurement. Clin Physiol Funct Imaging. 2015;35(2):81–97. Epub 2014/04/17. doi: 10.1111/cpf.12152 24735332.
14. Amur S, LaVange L, Zineh I, Buckman-Garner S, Woodcock J. Biomarker Qualification: Toward a Multiple Stakeholder Framework for Biomarker Development, Regulatory Acceptance, and Utilization. Clin Pharmacol Ther. 2015;98(1):34–46. Epub 2015/04/15. doi: 10.1002/cpt.136 25868461.
15. Caan BJ, Cespedes Feliciano EM, Prado CM, Alexeeff S, Kroenke CH, Bradshaw P, et al. Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol. 2018;4(6):798–804. Epub 2018/04/06. doi: 10.1001/jamaoncol.2018.0137 29621380.
16. Dahya V, Xiao J, Prado CM, Burroughs P, McGee D, Silva AC, et al. Computed tomography-derived skeletal muscle index: a novel predictor of frailty and hospital length of stay after transcatheter aortic valve replacement. Am Heart J. 2016;182:21–7. Epub 2016/12/05. doi: 10.1016/j.ahj.2016.08.016 27914496.
17. Malekpour M, Bridgham K, Jaap K, Erwin R, Widom K, Rapp M, et al. The effect of sarcopenia on outcomes in geriatric blunt trauma. Am Surg. 2017;83(11):1203–8. Epub 2017/12/01. 29183520.
18. Klopfenstein BJ, Kim MS, Krisky CM, Szumowski J, Rooney WD, Purnell JQ. Comparison of 3 T MRI and CT for the measurement of visceral and subcutaneous adipose tissue in humans. Br J Radiol. 2012;85(1018):e826–30. Epub 2012/04/20. doi: 10.1259/bjr/57987644 22514099; PMCID: PMC3474042.
19. Yoon DY, Moon JH, Kim HK, Choi CS, Chang SK, Yun EJ, et al. Comparison of low-dose CT and MR for measurement of intra-abdominal adipose tissue: a phantom and human study. Acad Radiol. 2008;15(1):62–70. Epub 2007/12/15. doi: 10.1016/j.acra.2007.07.013 18078908.
20. Yoshizumi T, Shirabe K, Nakagawara H, Ikegami T, Harimoto N, Toshima T, et al. Skeletal muscle area correlates with body surface area in healthy adults. Hepatol Res. 2014;44(3):313–8. Epub 2013/04/24. doi: 10.1111/hepr.12119 23607375.
21. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8. Epub 1979/03/01. doi: 10.1037/0033-2909.86.2.420 18839484.
22. Englesbe MJ, Patel SP, He K, Lynch RJ, Schaubel DE, Harbaugh C, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211(2):271–8. Epub 2010/07/31. doi: 10.1016/j.jamcollsurg.2010.03.039 20670867; PMCID: PMC2914324.
23. Ganapathi AM, Englum BR, Hanna JM, Schechter MA, Gaca JG, Hurwitz LM, et al. Frailty and risk in proximal aortic surgery. J Thorac Cardiovasc Surg. 2014;147(1):186–91.e1. Epub 2013/11/05. doi: 10.1016/j.jtcvs.2013.09.011 24183336; PMCID: PMC4336171.
24. Lee JS, He K, Harbaugh CM, Schaubel DE, Sonnenday CJ, Wang SC, et al. Frailty, core muscle size, and mortality in patients undergoing open abdominal aortic aneurysm repair. J Vasc Surg. 2011;53(4):912–7. Epub 2011/01/11. doi: 10.1016/j.jvs.2010.10.111 21215580.
25. Peng P, Hyder O, Firoozmand A, Kneuertz P, Schulick RD, Huang D, et al. Impact of sarcopenia on outcomes following resection of pancreatic adenocarcinoma. J Gastrointest Surg. 2012;16(8):1478–86. Epub 2012/06/14. doi: 10.1007/s11605-012-1923-5 22692586; PMCID: PMC3578313.
26. Du Y, Karvellas CJ, Baracos V, Williams DC, Khadaroo RG. Sarcopenia is a predictor of outcomes in very elderly patients undergoing emergency surgery. Surgery. 2014;156(3):521–7. Epub 2014/06/16. doi: 10.1016/j.surg.2014.04.027 24929435.
27. Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: Current Concepts and Imaging Implications. AJR Am J Roentgenol. 2015;205(3):W255–66. Epub 2015/06/24. doi: 10.2214/AJR.15.14635 26102307.
28. Harimoto N, Shirabe K, Yamashita YI, Ikegami T, Yoshizumi T, Soejima Y, et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br J Surg. 2013;100(11):1523–30. Epub 2013/09/17. doi: 10.1002/bjs.9258 24037576.
29. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33(5):997–1006. Epub 2008/10/17. doi: 10.1139/H08-075 18923576.
30. Sur MD, Namm JP, Hemmerich JA, Buschmann MM, Roggin KK, Dale W. Radiographic sarcopenia and self-reported exhaustion independently predict NSQIP serious complications after pancreaticoduodenectomy in older adults. Ann Surg Oncol. 2015;22(12):3897–904. Epub 2015/08/06. doi: 10.1245/s10434-015-4763-1 26242367.
31. Rutten IJG, Ubachs J, Kruitwagen R, Beets-Tan RGH, Olde Damink SWM, Van Gorp T. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer. J Cachexia Sarcopenia Muscle. 2017;8(4):630–8. Epub 2017/05/18. doi: 10.1002/jcsm.12180 28513088; PMCID: PMC5566632.
32. Lee SJ, Janssen I, Heymsfield SB, Ross R. Relation between whole-body and regional measures of human skeletal muscle. Am J Clin Nutr. 2004;80(5):1215–21. Epub 2004/11/09. doi: 10.1093/ajcn/80.5.1215 15531668.
33. Tandon P, Mourtzakis M, Low G, Zenith L, Ney M, Carbonneau M, et al. Comparing the variability between measurements for sarcopenia using magnetic resonance imaging and computed tomography imaging. Am J Transplant. 2016;16(9):2766–7. Epub 2016/04/20. doi: 10.1111/ajt.13832 27093434.
34. Schweitzer L, Geisler C, Pourhassan M, Braun W, Glüer C-C, Bosy-Westphal A, et al. Estimation of Skeletal Muscle Mass and Visceral Adipose Tissue Volume by a Single Magnetic Resonance Imaging Slice in Healthy Elderly Adults. The Journal of Nutrition. 2016;146(10):2143–8. doi: 10.3945/jn.116.236844 27581576
35. Tamandl D, Paireder M, Asari R, Baltzer PA, Schoppmann SF, Ba-Ssalamah A. Markers of sarcopenia quantified by computed tomography predict adverse long-term outcome in patients with resected oesophageal or gastro-oesophageal junction cancer. Eur Radiol. 2016;26(5):1359–67. Epub 2015/09/04. doi: 10.1007/s00330-015-3963-1 26334504.
36. van der Werf A, Langius JAE, de van der Schueren MAE, Nurmohamed SA, van der Pant KAMI, Blauwhoff-Buskermolen S, et al. Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. European Journal of Clinical Nutrition. 2018;72(2):288–96. doi: 10.1038/s41430-017-0034-5 29242526
37. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018;8(1):11369. Epub 2018/07/29. doi: 10.1038/s41598-018-29825-5 30054580; PMCID: PMC6063941.
38. Derstine BA, Holcombe SA, Goulson RL, Ross BE, Wang NC, Sullivan JA, et al. Quantifying Sarcopenia Reference Values Using Lumbar and Thoracic Muscle Areas in a Healthy Population. J Nutr Health Aging. 2017;21(10):180–5. Epub 2018/01/05. doi: 10.1007/s12603-017-0983-3 29300439.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania