Malaria transmission through the mosquito requires the function of the OMD protein
Autoři:
Chiara Currà aff001; Jessica Kehrer aff002; Leandro Lemgruber aff002; Patricia A. G. C. Silva aff003; Lucia Bertuccini aff004; Fabiana Superti aff004; Tomasino Pace aff006; Marta Ponzi aff004; Friedrich Frischknecht aff002; Inga Siden-Kiamos aff001; Gunnar R. Mair aff002
Působiště autorů:
Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
aff001; Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
aff002; Instituto Medicina Molecular, Lisbon, Portugal
aff003; Core Facilities, National Institute of Health, Rome, Italy
aff004; National Center for Innovative Technologies in Public Health, National Institute of Health, Rome, Italy
aff005; Department of Infectious Diseases, National Institute of Health, Rome, Italy
aff006; Iowa State University, Biomedical Sciences, Ames, Iowa, United States of America
aff007
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222226
Souhrn
Ookinetes, one of the motile and invasive forms of the malaria parasite, rely on gliding motility in order to establish an infection in the mosquito host. Here we characterize the protein PBANKA_0407300 which is conserved in the Plasmodium genus but lacks significant similarity to proteins of other eukaryotes. It is expressed in gametocytes and throughout the invasive mosquito stages of P. berghei, but is absent from asexual blood stages. Mutants lacking the protein developed morphologically normal ookinetes that were devoid of productive motility although some stretching movement could be detected. We therefore named the protein Ookinete Motility Deficient (OMD). Several key factors known to be involved in motility however were normally expressed and localized in the mutant. Importantly, the mutant failed to establish an infection in the mosquito which resulted in a total malaria transmission blockade.
Klíčová slova:
Blood – Polymerase chain reaction – Parasitic diseases – Plasmid construction – Gametocytes – Plasmodium – Malarial parasites – Oocysts
Zdroje
1. Frenal K, Dubremetz JF, Lebrun M, Soldati-Favre D (2017) Gliding motility powers invasion and egress in Apicomplexa. Nat Rev Microbiol 15: 645–660. doi: 10.1038/nrmicro.2017.86 28867819
2. Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, et al. (2016) An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion. Cell Host Microbe 20: 731–743. doi: 10.1016/j.chom.2016.10.020 27978434
3. Dessens JT, Beetsma AL, Dimopoulos G, Wengelnik K, Crisanti A, et al. (1999) CTRP is essential for mosquito infection by malaria ookinetes. Embo J 18: 6221–6227. 10562534
4. Templeton TJ, Kaslow DC, Fidock DA (2000) Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol Microbiol 36: 1–9. doi: 10.1046/j.1365-2958.2000.01821.x 10760158
5. Yuda M, Sakaida H, Chinzei Y (1999) Targeted disruption of the plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito. J Exp Med 190: 1711–1716. doi: 10.1084/jem.190.11.1711 10587361
6. Dessens JT, Siden-Kiamos I, Mendoza J, Mahairaki V, Khater E, et al. (2003) SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 49: 319–329. doi: 10.1046/j.1365-2958.2003.03566.x 12828632
7. Yuda M, Yano K, Tsuboi T, Torii M, Chinzei Y (2001) von Willebrand Factor A domain-related protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Mol Biochem Parasitol 116: 65–72. doi: 10.1016/s0166-6851(01)00304-8 11463467
8. Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D, et al. (2009) A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLoS Pathog 5: e1000599. doi: 10.1371/journal.ppat.1000599 19779564
9. Siden-Kiamos I, Ecker A, Nyback S, Louis C, Sinden RE, et al. (2006) Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Mol Microbiol 60: 1355–1363. doi: 10.1111/j.1365-2958.2006.05189.x 16796674
10. Brochet M, Collins MO, Smith TK, Thompson E, Sebastian S, et al. (2014) Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca(2)(+) signals at key decision points in the life cycle of malaria parasites. PLoS Biol 12: e1001806. doi: 10.1371/journal.pbio.1001806
11. Guttery DS, Poulin B, Ferguson DJ, Szoor B, Wickstead B, et al. (2012) A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathog 8: e1002948. doi: 10.1371/journal.ppat.1002948 23028336
12. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36: W465–469. doi: 10.1093/nar/gkn180 18424797
13. Mair GR, Lasonder E, Garver LS, Franke-Fayard BM, Carret CK, et al. (2010) Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog 6: e1000767. doi: 10.1371/journal.ppat.1000767 20169188
14. Janse CJ, Franke-Fayard B, Mair GR, Ramesar J, Thiel C, et al. (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145: 60–70. doi: 10.1016/j.molbiopara.2005.09.007 16242190
15. Deligianni E, Morgan RN, Bertuccini L, Wirth CC, Silmon de Monerri NC, et al. (2013) A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes. Cell Microbiol 15: 1438–1455. doi: 10.1111/cmi.12131 23461714
16. Siden-Kiamos I, Louis C, Matuschewski K (2012) Evidence for filamentous actin in ookinetes of a malarial parasite. Mol Biochem Parasitol 181: 186–189. doi: 10.1016/j.molbiopara.2011.11.002 22101204
17. Patzewitz EM, Guttery DS, Poulin B, Ramakrishnan C, Ferguson DJ, et al. (2013) An ancient protein phosphatase, SHLP1, is critical to microneme development in Plasmodium ookinetes and parasite transmission. Cell Rep 3: 622–629. doi: 10.1016/j.celrep.2013.01.032 23434509
18. Curra C, McMillan PJ, Spanos L, Mollard V, Deligianni E, et al. (2017) Structured illumination microscopy reveals actin I localization in discreet foci in Plasmodium berghei gametocytes. Exp Parasitol 181: 82–87. doi: 10.1016/j.exppara.2017.08.001 28803903
19. Winger LA, Tirawanchai N, Nicholas J, Carter HE, Smith JE, et al. (1988) Ookinete antigens of Plasmodium berghei. Appearance on the zygote surface of an Mr 21 kD determinant identified by transmission-blocking monoclonal antibodies. Parasite Immunol 10: 193–207. doi: 10.1111/j.1365-3024.1988.tb00214.x 2453831
20. Gomes-Santos CS, Braks J, Prudencio M, Carret C, Gomes AR, et al. (2011) Transition of Plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein Pumilio. PLoS Pathog 7: e1002046. doi: 10.1371/journal.ppat.1002046 21625527
21. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46: W296–W303. doi: 10.1093/nar/gky427 29788355
22. Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, et al. (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37: D539–543. doi: 10.1093/nar/gkn814 18957442
23. Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, et al. (2017) Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell 170: 260–272 e268. doi: 10.1016/j.cell.2017.06.030 28708996
24. Siden-Kiamos I, Ganter M, Kunze A, Hliscs M, Steinbuchel M, et al. (2011) Stage-specific depletion of myosin A supports an essential role in motility of malarial ookinetes. Cell Microbiol 13: 1996–2006. doi: 10.1111/j.1462-5822.2011.01686.x 21899701
25. Siden-Kiamos I, Pinder JC, Louis C (2006) Involvement of actin and myosins in Plasmodium berghei ookinete motility. Mol Biochem Parasitol 150: 308–317. doi: 10.1016/j.molbiopara.2006.09.003 17028009
26. Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907. doi: 10.1016/0092-8674(87)90086-9 3545499
27. Capitani M, Sallese M (2009) The KDEL receptor: new functions for an old protein. FEBS Lett 583: 3863–3871. doi: 10.1016/j.febslet.2009.10.053 19854180
28. Collins MN, Hendrickson WA (2011) Structural characterization of the Boca/Mesd maturation factors for LDL-receptor-type beta propeller domains. Structure 19: 324–336. doi: 10.1016/j.str.2010.11.017
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania