#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Adrenal gland size in obstructive sleep apnea: Morphological assessment of hypothalamic pituitary adrenal axis activity


Autoři: Takuma Minami aff001;  Ryo Tachikawa aff001;  Takeshi Matsumoto aff001;  Kimihiko Murase aff002;  Kiminobu Tanizawa aff002;  Morito Inouchi aff002;  Tomohiro Handa aff001;  Toru Oga aff003;  Toyohiro Hirai aff001;  Kazuo Chin aff002
Působiště autorů: Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan aff001;  Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan aff002;  Department of Respiratory Medicine, Kawasaki Medical School, Kurashiki, Japan aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222592

Souhrn

Objectives

The association of obstructive sleep apnea (OSA) with hypothalamic pituitary adrenal (HPA) axis activation has not been fully understood from results of previous studies using hormonal assessments. We aimed to investigate the relationship between adrenal size, a potential marker reflecting HPA axis activity, and sleep parameters related to OSA.

Methods

We retrospectively reviewed data on 284 consecutive adult patients aged 20 to 80 y who had undergone polysomnography and abdominal computed tomography (CT). OSA was defined as none/mild (apnea-hypopnea index [AHI] <15, n = 75), moderate (AHI 15 to 30, n = 80), and severe OSA (AHI ≥30, n = 129). Widths of adrenal body and limbs were measured by abdominal CT.

Results

Adrenal size was greater in participants with severe OSA than in those with none/mild or moderate OSA (adrenal body width: 6.03 mm, none/mild OSA; 6.09 mm, moderate OSA; 6.78 mm, severe OSA; p <0.001; adrenal limb width: 3.75 mm, none/mild OSA; 3.95 mm, moderate OSA; 4.26 mm, severe OSA, p <0.001). Multivariate regression analysis showed that not the 3% oxygen desaturation index and time of SpO2 <90% but a higher arousal index was the only determinant factor for increased adrenal limb width (β = 0.27, p <0.001) after adjusting for other variables that could affect adrenal size. Neither the arousal index nor hypoxic parameters were associated with adrenal body width.

Conclusions

Results indicated that adrenal glands may enlarge in response to longstanding sleep fragmentation, suggesting the involvement of OSA in HPA axis augmentation.

Klíčová slova:

Biology and life sciences – Biochemistry – Research and analysis methods – Neuroscience – Anatomy – Medicine and health sciences – Physiology – Physiological parameters – Diagnostic medicine – Metabolic disorders – Body weight – Hormones – Lipids – Physiological processes – Neurology – Fats – Imaging techniques – Obesity – Lipid hormones – Neuroimaging – Diagnostic radiology – Radiology and imaging – Tomography – Computed axial tomography – Sleep disorders – Endocrine system – Cortisol – Steroid hormones – Sleep – Adrenal glands – Metabolic syndrome


Zdroje

1. Newman AB, Nieto FJ, Guidry U, Lind BK, Redline S, Pickering TG, et al. Relation of sleep-disordered breathing to cardiovascular disease risk factors: the Sleep Heart Health Study. Am J Epidemiol. 2001;154: 50–9. doi: 10.1093/aje/154.1.50 11434366

2. Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet. Elsevier Ltd; 2009;373: 82–93. doi: 10.1016/S0140-6736(08)61622-0

3. Mansukhani MP, Kara T, Caples SM, Somers VK. Chemoreflexes, sleep apnea, and sympathetic dysregulation. Curr Hypertens Rep. 2014;16: 476. doi: 10.1007/s11906-014-0476-2 25097113

4. Tomfohr LM, Edwards KM, Dimsdale JE. Is obstructive sleep apnea associated with cortisol levels? A systematic review of the research evidence. Sleep Med Rev. 2012;16: 243–9. doi: 10.1016/j.smrv.2011.05.003 21803621

5. Kritikou I, Basta M, Vgontzas AN, Pejovic S, Fernandez-Mendoza J, Liao D, et al. Sleep apnoea and the hypothalamic–pituitary–adrenal axis in men and women: effects of continuous positive airway pressure. Eur Respir J. 2016;47: 531–540. doi: 10.1183/13993003.00319-2015 26541531

6. Vgontzas AN, Pejovic S, Zoumakis E, Lin H-M, Bentley CM, Bixler EO, et al. Hypothalamic-pituitary-adrenal axis activity in obese men with and without sleep apnea: effects of continuous positive airway pressure therapy. J Clin Endocrinol Metab. 2007;92: 4199–207. doi: 10.1210/jc.2007-0774 17785363

7. Selye H. A Syndrome produced by Diverse Nocuous Agents. Nature. 1936;138: 32–32. doi: 10.1038/138032a0

8. Vincent JM, Morrison ID, Armstrong P, Reznek RH. The size of normal adrenal glands on computed tomography. Clin Radiol. 1994;49: 453–455. doi: 10.1016/s0009-9260(05)81739-8 8088036

9. Rubin RT, Phillips JJ. Adrenal gland volume determination by computed tomography and magnetic resonance imaging in normal subjects. Invest Radiol. 1991;26: 465–9. doi: 10.1097/00004424-199105000-00015 2055745

10. Jenkins PJ, Sohaib SA, Trainer PJ, Lister TA, Besser GM, Reznek R. Adrenal enlargement and failure of suppression of circulating cortisol by dexamethasone in patients with malignancy. Br J Cancer. 1999;80: 1815–9. doi: 10.1038/sj.bjc.6690603 10468302

11. Rubin RT, Phillips JJ, Sadow TF, McCracken JT. Adrenal gland volume in major depression. Increase during the depressive episode and decrease with successful treatment. Arch Gen Psychiatry. 1995;52: 213–8. doi: 10.1001/archpsyc.1995.03950150045009 7872849

12. Yildiz O, Gokce C, Alp E, Durak AC, Aygen B, Kelestimur F, et al. Investigation of the hypothalamo-pituitary-adrenal axis and changes in the size of adrenal glands in acute brucellosis. Endocr J. 2005;52: 183–188. doi: 10.1507/endocrj.52.183 15863945

13. Gülmez I, Keleştimur F, Durak AC, Ozesmi M. Changes in the size of adrenal glands in acute pulmonary tuberculosis with therapy. Endocr J. 1996;43: 573–576. doi: 10.1507/endocrj.43.573 8980899

14. Nougaret S, Jung B, Aufort S, Chanques G, Jaber S, Gallix B. Adrenal gland volume measurement in septic shock and control patients: A pilot study. Eur Radiol. 2010;20: 2348–2357. doi: 10.1007/s00330-010-1804-9 20521055

15. Hu M, Yip R, Yankelevitz DY, Henschke CI. CT screening for lung cancer: Frequency of enlarged adrenal glands identified in baseline and annual repeat rounds. Eur Radiol. European Radiology; 2016;26: 4475–4481. doi: 10.1007/s00330-016-4331-5 27108301

16. Godoy-Matos AF, Vieira AR, Moreira RO, Coutinho WF, Carraro LM, Moreira DM, et al. The potential role of increased adrenal volume in the pathophysiology of obesity-related type 2 diabetes. J Endocrinol Invest. 2006;29: 159–63. doi: 10.1007/BF03344090 16610243

17. Sohaib SA, Hanson JA, Newell-Price JD, Trainer PJ, Monson JP, Grossman AB, et al. CT appearance of the adrenal glands in adrenocorticotrophic hormone-dependent Cushing’s syndrome. AJR Am J Roentgenol. 1999;172: 997–1002. doi: 10.2214/ajr.172.4.10587135 10587135

18. Imaki T, Naruse M, Takano K. Adrenocortical hyperplasia associated with ACTH-dependent Cushing’s syndrome: comparison of the size of adrenal glands with clinical and endocrinological data. Endocr J. 2004;51: 89–95. doi: 10.1507/endocrj.51.89 15004414

19. Lingam RK, Sohaib SA, Vlahos I, Rockall AG, Isidori AM, Monson JP, et al. CT of primary hyperaldosteronism (Conn’s syndrome): the value of measuring the adrenal gland. AJR Am J Roentgenol. 2003;181: 843–9. doi: 10.2214/ajr.181.3.1810843 12933492

20. Sasanabe R, Banno K, Otake K, Hasegawa R, Usui K, Morita M, et al. Metabolic syndrome in Japanese patients with obstructive sleep apnea syndrome. Hypertens Res. 2006;29: 315–22. doi: 10.1291/hypres.29.315 16832151

21. Chin K, Oga T, Takahashi K, Takegami M, Nakayama-Ashida Y, Wakamura T, et al. Associations between obstructive sleep apnea, metabolic syndrome, and sleep duration, as measured with an actigraph, in an urban male working population in Japan. Sleep. 2010;33: 89–95. doi: 10.1093/sleep/33.1.89 20120625

22. [Definition and the diagnostic standard for metabolic syndrome—Committee to Evaluate Diagnostic Standards for Metabolic Syndrome]. Nihon Naika Gakkai Zasshi. 2005;94: 794–809. (in Japanese) 15865013

23. Harada Y, Oga T, Chihara Y, Azuma M, Murase K, Toyama Y, et al. Differences in associations between visceral fat accumulation and obstructive sleep apnea by sex. Ann Am Thorac Soc. 2014;11: 383–391. doi: 10.1513/AnnalsATS.201306-182OC 24471804

24. Iber C, Ancoli-Isarael S, Chesson A, Quan SF. The AASM manual for the scoring of sleep and associated events: rules, terminolgy, and technical secifications. American Academy of Sleep Medicine. Westchester, IL; 2007.

25. Takegami M, Suzukamo Y, Wakita T, Noguchi H, Chin K, Kadotani H, et al. Development of a Japanese version of the Epworth Sleepiness Scale (JESS) based on item response theory. Sleep Med. Elsevier B.V.; 2009;10: 556–65. doi: 10.1016/j.sleep.2008.04.015 18824408

26. Zigmond a S, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67: 361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x 6880820

27. Examination Committee of Criteria for “Obesity Disease” in Japan, Japan Society for the Study of Obesity. New criteria for “obesity disease” in Japan. Circ J. 2002;66: 987–92. doi: 10.1253/circj.66.987 12419927

28. Schneller J, Reiser M, Beuschlein F, Osswald A, Pallauf A, Riester A, et al. Linear and volumetric evaluation of the adrenal gland-MDCT-based measurements of the adrenals. Acad Radiol. Elsevier Ltd; 2014;21: 1465–1474. doi: 10.1016/j.acra.2014.06.008 25300724

29. Chin K, Shimizu K, Nakamura T, Narai N, Masuzaki H, Ogawa Y, et al. Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy. Circulation. 1999;100: 706–712. doi: 10.1161/01.cir.100.7.706 10449691

30. Follenius M, Krieger J, Krauth MO, Sforza F, Brandenberger G. Obstructive sleep apnea treatment: peripheral and central effects on plasma renin activity and aldosterone. Sleep. 1991;14: 211–217. 1896722

31. Schmoller A, Eberhardt F, Jauch-Chara K, Schweiger U, Zabel P, Peters A, et al. Continuous positive airway pressure therapy decreases evening cortisol concentrations in patients with severe obstructive sleep apnea. Metabolism. Elsevier Inc.; 2009;58: 848–853. doi: 10.1016/j.metabol.2009.02.014 19375124

32. Barceló A, Barbé F, de la Peña M, Martinez P, Soriano JB, Piérola J, et al. Insulin resistance and daytime sleepiness in patients with sleep apnoea. Thorax. 2008;63: 946–50. doi: 10.1136/thx.2007.093740 18535117

33. Elder GJ, Wetherell MA, Barclay NL, Ellis JG. The cortisol awakening response—applications and implications for sleep medicine. Sleep Med Rev. Elsevier Ltd; 2014;18: 215–24. doi: 10.1016/j.smrv.2013.05.001 23835138

34. Agnew HW, Webb WB, Williams RL. The first night effect: an EEG study of sleep. Psychophysiology. 1966;2: 263–266. doi: 10.1111/j.1469-8986.1966.tb02650.x 5903579

35. Chopra S, Rathore A, Younas H, Pham L V., Gu C, Beselman A, et al. Obstructive Sleep Apnea Dynamically Increases Nocturnal Plasma Free Fatty Acids, Glucose, and Cortisol During Sleep. J Clin Endocrinol Metab. 2017;102: 3172–3181. doi: 10.1210/jc.2017-00619 28595341

36. Elmasry A, Lindberg E, Hedner J, Janson C, Boman G. Obstructive sleep apnoea and urine catecholamines in hypertensive males: A population-based study. Eur Respir J. 2002;19: 511–517. doi: 10.1183/09031936.02.00106402 11936531

37. Bisogni V, Pengo MF, Maiolino G, Rossi GP. The sympathetic nervous system and catecholamines metabolism in obstructive sleep apnoea. J Thorac Dis. 2016;8: 243–54. doi: 10.3978/j.issn.2072-1439.2015.11.14 26904265

38. Narkiewicz K, Montano N, Cogliati C, van de Borne PJ, Dyken ME, Somers VK. Altered cardiovascular variability in obstructive sleep apnea. Circulation. 1998;98: 1071–7. doi: 10.1161/01.cir.98.11.1071 9736593

39. Suzuki M, Guilleminault C, Otsuka K, Shiomi T. Blood pressure “dipping” and “non-dipping” in obstructive sleep apnea syndrome patients. Sleep. 1996;19: 382–7. doi: 10.1093/sleep/19.5.382 8843529

40. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest. 1993;103: 1763–1768. doi: 10.1378/chest.103.6.1763 8404098

41. Rubin RT, Phillips JJ, McCracken JT, Sadow TF. Adrenal gland volume in major depression: Relationship to basal and stimulated pituitary-adrenal cortical axis function. Biol Psychiatry. 1996;40: 89–97. doi: 10.1016/0006-3223(95)00358-4 8793041

42. Ma S, Mifflin SW, Cunningham JT, Morilak DA. Chronic intermittent hypoxia sensitizes acute hypothalamic-pituitary-adrenal stress reactivity and Fos induction in the rat locus coeruleus in response to subsequent immobilization stress. Neuroscience. 2008;154: 1639–47. doi: 10.1016/j.neuroscience.2008.04.068 18554809

43. Späth-Schwalbe E, Gofferje M, Kern W, Born J, Fehm HL. Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. Biol Psychiatry. 1991;29: 575–584. doi: 10.1016/0006-3223(91)90093-2 1647222

44. Ekstedt M, Åkerstedt T, Söderström M. Microarousals during sleep are associated with increased levels of lipids, cortisol, and blood pressure. Psychosom Med. 2004;66: 925–931. doi: 10.1097/01.psy.0000145821.25453.f7 15564359

45. Loredo JS, Ziegler MG, Ancoli-Israel S, Clausen JL, Dimsdale JE. Relationship of arousals from sleep to sympathetic nervous system activity and BP in obstructive sleep apnea. Chest. 1999;116: 655–9. doi: 10.1378/chest.116.3.655 10492267

46. Taylor KS, Murai H, Millar PJ, Haruki N, Kimmerly DS, Morris BL, et al. Arousal from Sleep and Sympathetic Excitation during Wakefulness. Hypertension. 2016;68: 1467–1474. doi: 10.1161/HYPERTENSIONAHA.116.08212 27698070

47. Tsatsoulis A. The Role of Insulin Resistance/Hyperinsulinism on the Rising Trend of Thyroid and Adrenal Nodular Disease in the Current Environment. J Clin Med. 2018;7: 37. doi: 10.3390/jcm7030037 29495350

48. Dobbie JW, Symington T. The human adrenal gland with special reference to the vasculature. J Endocrinol. 1966;34: 479–489. doi: 10.1677/joe.0.0340479 5933099

49. Carsin-Vu A, Oubaya N, Mulé S, Janvier A, Delemer B, Soyer P, et al. MDCT Linear and Volumetric Analysis of Adrenal Glands: Normative Data and Multiparametric Assessment. Eur Radiol. 2016;26: 2494–501. doi: 10.1007/s00330-015-4063-y 26515550

50. Saunamäki T, Jehkonen M. Depression and anxiety in obstructive sleep apnea syndrome: a review. Acta Neurol Scand. 2007;116: 277–88. doi: 10.1111/j.1600-0404.2007.00901.x 17854419

51. BaHammam AS, Kendzerska T, Gupta R, Ramasubramanian C, Neubauer DN, Narasimhan M, et al. Comorbid depression in obstructive sleep apnea: an under-recognized association. Sleep Breath. Sleep and Breathing; 2016;20: 447–56. doi: 10.1007/s11325-015-1223-x 26156890

52. Bjorvatn B, Rajakulendren N, Lehmann S, Pallesen S. Increased severity of obstructive sleep apnea is associated with less anxiety and depression. J Sleep Res. 2018;27: e12647. doi: 10.1111/jsr.12647 29193447


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#