The negative effects of short-term extreme thermal events on the seagrass Posidonia oceanica are exacerbated by ammonium additions
Autoři:
Yaiza Ontoria aff001; Ainhoa Cuesta-Gracia aff001; Juan M. Ruiz aff002; Javier Romero aff001; Marta Pérez aff001
Působiště autorů:
Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
aff001; Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, San Pedro del Pinatar, Murcia, Spain
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222798
Souhrn
Global warming is increasingly affecting our biosphere. However, in addition to global warming, a panoply of local stressors caused by human activities is having a profound impact on our environment. The risk that these local stressors could modify the response of organisms to global warming has attracted interest and fostered research on their combined effect, especially with a view to identifying potential synergies. In coastal areas, where human activities are heavily concentrated, this scenario is particularly worrying, especially for foundation species such as seagrasses. In this study we explore these potential interactions in the seagrass Posidonia oceanica. This species is endemic to the Mediterranean Sea. It is well known that the Mediterranean is already experiencing the effects of global warming, especially in the form of heat waves, whose frequency and intensity are expected to increase in the coming decades. Moreover, this species is especially sensitive to stress and plays a key role as a foundation species. The aim of this work is thus to evaluate plant responses (in terms of photosynthetic efficiency and growth) to the combined effects of short-term temperature increases and ammonium additions.To achieve this, we conducted a mesocosm experiment in which plants were exposed to three thermal treatments (20°C, 30°C and 35°C) and three ammonium concentrations (ambient, 30 μM and 120 μM) in a full factorial experiment. We assessed plant performance by measuring chlorophyll fluorescence variables (maximum quantum yield (Fv/Fm), effective quantum yield of photosystem II (ΔF/Fm’), maximum electron transport rate (ETRmax) and non-photochemical quenching (NPQ)), shoot growth rate and leaf necrosis incidence. At ambient ammonium concentrations, P. oceanica tolerates short-term temperature increases up to 30°C. However, at 35°C, the plant loses functionality as indicated by a decrease in photosynthetic performance, an inhibition of plant growth and an increase of the necrosis incidence in leaves. On the other hand, ammonium additions at control temperatures showed only a minor effect on seagrass performance. However, the combined effects of warming and ammonium were much worse than those of each stressor in isolation, given that photosynthetic parameters and, above all, leaf growth were affected. This serves as a warning that the impact of global warming could be even worse than expected (based on temperature-only approaches) in environments that are already subject to eutrophication, especially in persistent seagrass species living in oligotrophic environments.
Klíčová slova:
Biology and life sciences – Plant science – Developmental biology – Medicine and health sciences – Pathology and laboratory medicine – Diagnostic medicine – Signs and symptoms – Earth sciences – Ecology and environmental sciences – Ecology – Plant physiology – Plant anatomy – Leaves – Ecosystems – Marine and aquatic sciences – Atmospheric science – Necrosis – Oceanography – Plant growth and development – Climatology – Climate change – Shoot growth – Coastal ecosystems – Eutrophication – Ocean waves – Global warming
Zdroje
1. Hallett CS, Hobday AJ, Tweedley JR, Thompson PA, McMahon K, Valesini FJ. Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg Environ Chang. Regional Environmental Change; 2017; 1–17. doi: 10.1007/s10113-017-1264-8
2. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, et al. The impacts of climate change in coastal marine systems. Ecol Lett. 2006;9: 228–241. doi: 10.1111/j.1461-0248.2005.00871.x 16958887
3. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003; 37–42.
4. IPCC. Climate change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambrige, UK. 2014;
5. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013.
6. IPCC. Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change, (March 21). 2007; 104. doi: 10.1256/004316502320517344
7. Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st Century. Science (80-). 2004;305: 994–997.
8. Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander L V., et al. Longer and more frequent marine heatwaves over the past century. Nat Commun. 2018;9: 1–12. doi: 10.1038/s41467-017-02088-w
9. Schär C, Jendritzky G. Hot news from summer 2003. Nature. 2004;432: 559–560. doi: 10.1038/432559a 15577890
10. Wernberg T, Bennett S, Babcock RC, Bettignies T De, Cure K, Depczynski M, et al. Climate-driven regime shift of a temperate marine ecosystem. Science (80-). 2016;353: 169–172. doi: 10.1126/science.aad8745 27387951
11. Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun. 2015;6: 1–7. doi: 10.1038/ncomms8615 26172980
12. Brown CJ, Saunders MI, Possingham HP, Richardson AJ. Managing for interactions between local and global stressors of ecosystems. PLoS One. 2013;8. doi: 10.1371/journal.pone.0065765 23776542
13. Côté IM, Darling ES, Brown CJ. Interactions among ecosystem stressors and their importance in conservation. Proc R Soc B. 2016;283. http://dx.doi.org/10.1098/rspb.2015.2592
14. Gunderson AR, Armstrong EJ, Stillman JH. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Ann Rev Mar Sci. 2016;8: 357–378. doi: 10.1146/annurev-marine-122414-033953 26359817
15. Dunne RP. Synergy or antagonism-interactions between stressors on coral reefs. Coral Reefs. 2010;29: 145–152. doi: 10.1007/s00338-009-0569-6
16. Darling ES, Côté IM. Quantifying the evidence for ecological synergies. Ecol Lett. 2008;11: 1278–1286. doi: 10.1111/j.1461-0248.2008.01243.x 18785986
17. Diaz-Almela E, Marba N, Duarte CM. Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Glob Chang Biol. 2007;13: 224–235. doi: 10.1111/j.1365-2486.2006.01260.x
18. Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci. 2009;106: 6176–81. doi: 10.1073/pnas.0805801106 19332777
19. Marbà N, Duarte CM. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob Chang Biol. 2010;16: 2366–2375. doi: 10.1111/j.1365-2486.2009.02130.x
20. Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50: 839–66.
21. Hughes BB, Eby R, Van Dyke E, Tinker MT, Marks CI, Johnson KS, et al. Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc Natl Acad Sci. 2013;110: 15313–15318. doi: 10.1073/pnas.1302805110 23983266
22. Collier CJ, Waycott M. Temperature extremes reduce seagrass growth and induce mortality. Mar Pollut Bull. 2014;83: 483–490. doi: 10.1016/j.marpolbul.2014.03.050 24793782
23. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci. 2009;106: 12377–12381. doi: 10.1073/pnas.0905620106 19587236
24. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, et al. A global crisis for seagrass ecosystems. Bioscience. 2006;56: 987–996. doi: 10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2
25. Koch M, Bowes G, Ross C, Zhang XH. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol. 2013;19: 103–132. doi: 10.1111/j.1365-2486.2012.02791.x 23504724
26. Lee KS, Park SR, Kim YK. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J Exp Mar Bio Ecol. 2007;350: 144–175. doi: 10.1016/j.jembe.2007.06.016
27. Marín-Guirao L, Bernardeau-Esteller J, García-Muñoz R, Ramos A, Ontoria Y, Romero J, et al. Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar Pollut Bull. Elsevier; 2018;135: 617–629. doi: 10.1016/j.marpolbul.2018.07.050 30301080
28. Moore KA, Short FT. Zostera: Biology, ecology, and management. In: Seagrasses: Biology, ecology and conservation. Springer,. 2006. pp. 361–386. doi: 10.1007/978-1-4020-2983-7
29. Greve TM, Borum J, Pedersen O. Meristematic oxygen variability in eelgrass (Zostera marina). Limnol Oceanogr. 2003;48: 210–216. doi: 10.4319/lo.2003.48.1.0210
30. Pérez M, Romero J. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquat Bot. 1992;43: 51–62.
31. Bulthuis DA. Effects of temperature on photosynthesis and growth of seagrasses. Aquat Bot. 1987;27: 27–40.
32. Repolho T, Duarte B, Dionísio G, Paula JR, Lopes AR, Rosa IC, et al. Seagrass ecophysiological performance under ocean warming and acidification. Sci Rep. 2017;7: 1–12. doi: 10.1038/s41598-016-0028-x
33. York PH, Gruber RK, Hill R, Ralph PJ, Booth DJ, Macreadie PI. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PLoS One. 2013;8: 1–12. doi: 10.1371/journal.pone.0076377 24124551
34. Ralph PJ. Photosynthetic response of laboratory-cultured Halophila ovalis to thermal stress. Mar Ecol Prog Ser. 1998;171: 123–130. doi: 10.3354/meps171123
35. Campbell SJ, McKenzie LJ, Kerville SP. Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J Exp Mar Bio Ecol. 2006;330: 455–468. doi: 10.1016/j.jembe.2005.09.017
36. Hendriks IE, Olsen YS, Duarte CM. Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica. Aquat Bot. 2017;139: 32–36. doi: 10.1016/j.aquabot.2017.02.004
37. Kaldy JE, Shafer DJ. Effects of salinity on survival of the exotic seagrass Zostera japonica subjected to extreme high temperature stress. Botanica. 2013;56: 75–82. doi: 10.1515/bot-2012-0144
38. Massa SI, Arnaud-Haond S, Pearson GA, Serrão EA. Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia. 2009;619: 195–201. doi: 10.1007/s10750-008-9609-4
39. Collier CJCJ, Uthicke S, Waycott M. Thermal tolerance of two seagrass species at contrasting light levels: Implications for future distribution in the Great Barrier Reef. Limnol Oceanogr. 2011;56: 1–32. doi: 10.4319/lo.2011.56.6.2200
40. Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science (80-). 2008;321: 926–929.
41. Nixon SW, Fulweiler RW. Nutrient pollution, eutrophication, and the degradation of coastal marine ecosystems. Global Loss of Coastal Habitats Rates, Causes and Consequences. 2009. doi: 10.1017/CBO9781107415324.004
42. Green EP, Short FT. World atlas of seagrasses. Botanica Marina. 2003. doi: 10.1515/BOT.2004.029
43. Burkholder JM, Tomasko DA, Touchette BW. Seagrasses and eutrophication. J Exp Mar Bio Ecol. 2007;350: 46–72. doi: 10.1016/j.jembe.2007.06.024
44. Kaldy JE. Effect of temperature and nutrient manipulations on eelgrass Zostera marina L. from the Pacific Northwest, USA. J Exp Mar Bio Ecol. 2014;453: 108–115. doi: 10.1016/j.jembe.2013.12.020
45. Burkholder JM, Mason KM, Glasgow HB. Water-column nitrate enrichment promotes decline of eelgrass Zostera marina: evidence from seasonal mesocosm experiments. Mar Ecol Prog Ser. 1992;81: 163–178.
46. Burkholder JM, Glasgow HB, Cooke JE. Comparative effects of water-column nitrate enrichment on eelgrass Zostera marina, shoalgrass Halodule wrightii, and widgeongrass Ruppia maritima. Mar Ecol Prog Ser. 1994;105: 121–138. doi: 10.3354/meps105121
47. Van Katwijk MM, Vergeer LHT, Schmitz GHW, Roelofs JGM. Ammonium toxicity in eelgrass Zostera marina. Mar Ecol Prog Ser. 1997;157: 159–173. doi: 10.3354/meps157159
48. Brun FG, Hernández I, Vergara JJ, Peralta G, Pérez-Lloréns JL. Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Mar Ecol Prog Ser. 2002;225: 177–187. doi: 10.3354/meps225177
49. Brun FG, Olivé I, Malta EJ, Vergara JJ, Hernández I, Pérez-Lloréns JL. Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Mar Ecol Prog Ser. 2008;365: 67–75. doi: 10.3354/meps07512
50. Van der Heide T, Smolders AJP, Rijkens BGA, Van Nes EH, Van Katwijk MM, Roelofs JGM. Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH. Physiol Ecol. 2008;158: 411–419. doi: 10.1007/s00442-008-1155-2 18813957
51. Villazán B, Brun FG, Jiménez-Ramos R, Pérez-Lloréns JL, Vergara JJ. Interaction between ammonium and phosphate uptake rates in the seagrass Zostera noltii. Mar Ecol Prog Ser. 2013;488: 133–143. doi: 10.3354/meps10395
52. Villazán B, Pedersen MF, Brun FG, Vergara JJ. Elevated ammonium concentrations and low light form a dangerous synergy for eelgrass Zostera marina. Mar Ecol Prog Ser. 2013;493: 141–154. doi: 10.3354/meps10517
53. Moreno-Marín F, Vergara JJ, Pérez-Lloréns JL, Pedersen MF, Brun FG. Interaction between ammonium toxicity and green tide development over seagrass meadows: A laboratory study. PLoS One. 2016;11. doi: 10.1371/journal.pone.0152971 27035662
54. Koch MS, Schopmeyer S, Kyhn-Hansen C, Madden CJ. Synergistic effects of high temperature and sulfide on tropical seagrass. J Exp Mar Bio Ecol. 2007;341: 91–101. doi: 10.1016/j.jembe.2006.10.004
55. Ontoria Y, González-Guedes E, Sanmartí N, Bernardeau-Esteller J, Ruiz JM, Romero J, et al. Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass. Mar Environ Res. 2019;145: 27–38. doi: 10.1016/j.marenvres.2019.02.002 30795849
56. Salo T, Pedersen MF. Synergistic effects of altered salinity and temperature on estuarine eelgrass (Zostera marina) seedlings and clonal shoots. J Exp Mar Bio Ecol. 2014;457: 143–150. doi: 10.1016/j.jembe.2014.04.008
57. Wilkinson AD, Collier CJ, Flores F, Langlois L, Ralph PJ, Negri AP. Combined effects of temperature and the herbicide diuron on Photosystem II activity of the tropical seagrass Halophila ovalis. Sci Rep. 2017; 1–11. doi: 10.1038/s41598-016-0028-x
58. Marbà N, Duarte CM. Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser. 1998;174: 269–280. doi: 10.3354/meps174269
59. Egea LG, Jiménez-Ramos R, Vergara JJ, Hernández I, Brun FG. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Mar Pollut Bull. 2018;134: 14–26. doi: 10.1016/j.marpolbul.2018.02.029 29475735
60. Moreno-Marín F, Brun FG, Pedersen MF. Additive response to multiple environmental stressors in the seagrass Zostera marina. Limnol Oceanogr. 2018;63: 1528–1544. doi: 10.1002/lno.10789
61. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ. 2015;534: 97–109. doi: 10.1016/j.scitotenv.2015.04.061 25917445
62. Arnaud-Haond S, Duarte CM, Diaz-Almela E, Marbà N, Sintes T, Serrão EA. Implications of extreme life span in clonal organisms: Millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS One. 2012;7. doi: 10.1371/journal.pone.0030454 22312426
63. Marbà N, Duarte CM, Holmer M, Martínez R, Basterretxea G, Orfila A, et al. Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environ Conserv. 2002;29: 509–518. doi: 10.1017/s037689290200036x
64. Marbà N, Díaz-almela E, Duarte CM. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol Conserv. 2014;176: 183–190. doi: 10.1016/j.biocon.2014.05.024
65. Boudouresque CF, Bernard G, Bonhomme P, Charbonnel E, Diviacco G, Meinesz A, et al. Protection and conservation of Posidonia oceanica meadows. 2012.
66. Vargas-Yañez M, García Martinez Mc, Moya Ruiz F, Tel E, Parrilla G, Plaza F, et al. Cambio climático en el Mediterráneo español. 2007.
67. Karydis M, Kitsiou D. Eutrophication and environmental policy in the Mediterranean Sea: A review. Environ Monit Assess. 2012;184: 4931–4984. doi: 10.1007/s10661-011-2313-2 21956336
68. Holmer M, Duarte CM, Marbá N. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry. 2003;66: 223–239. doi: 10.1023/B:BIOG.0000005326.35071.51
69. Invers O, Kraemer GP, Pérez M, Romero J. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. J Exp Mar Bio Ecol. 2004;303: 97–114. doi: 10.1016/j.jembe.2003.11.005
70. Pérez M, Invers O, Ruiz JM, Frederiksen MS, Holmer M. Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in sediments: An experimental assessment. J Exp Mar Bio Ecol. 2007;344: 149–160. doi: 10.1016/j.jembe.2006.12.020
71. Ruiz JM, Pérez M, Romero J. Effects of fish farm loadings on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Mar Pollut Bull. 2001;42: 749–760. doi: 10.1016/S0025-326X(00)00215-0 11585068
72. Beca-Carretero P, Guihéneuf F, Marín-Guirao L, Bernardeau-Esteller J, García-Muñoz R, Stengel DB, et al. Effects of an experimental heat wave on fatty acid composition in two Mediterranean seagrass species. Mar Pollut Bull. 2018;134: 27–37. doi: 10.1016/j.marpolbul.2017.12.057 29331284
73. Guerrero-Meseguer L, Marín A, Sanz-Lázaro C. Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings. Environ Pollut. 2017;230: 40–45. doi: 10.1016/j.envpol.2017.06.039 28644983
74. Marín-Guirao L, Ruiz JM, Dattolo E, García-Muñoz R, Procaccini G. Physiological and molecular evidence of differential short-Term heat tolerance in Mediterranean seagrasses. Sci Rep. 2016;6: 1–13. doi: 10.1038/s41598-016-0001-8
75. Marín-Guirao L, Entrambasaguas L, Dattolo E, Ruiz JM, Procaccini G. Molecular mechanisms behind the physiological resistance to intense transient warming in an iconic marine plant. Front Plant Sci. 2017;8: 1–15. doi: 10.3389/fpls.2017.00001
76. Olsen YS, Sánchez-Camacho M, Marbà N, Duarte CM. Mediterranean seagrass growth and demography responses to experimental warming. Estuaries and Coasts. 2012;35: 1205–1213. doi: 10.1007/s12237-012-9521-z
77. Savva I, Bennett S, Roca G, Jordà G, Marbà N. Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming. Ecol Evol. 2018; 1–12. doi: 10.1002/ece3.4663 30598797
78. Galli G, Solidoro C, Lovato T. Marine Heat Waves Hazard 3D Maps and the Risk for Low Motility Organisms in a Warming Mediterranean Sea. 2017;4: 1–14. doi: 10.3389/fmars.2017.00136
79. Sánchez E, Gallardo C, Gaertner MA, Arribas A, Castro M. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change. 2004;44: 163–180. doi: 10.1016/j.gloplacha.2004.06.010
80. Arévalo R, Pinedo S, Ballesteros E. Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: Descriptive study and test of proposed methods to assess water quality regarding macroalgae. Mar Pollut Bull. 2007;55: 104–113. doi: 10.1016/j.marpolbul.2006.08.023 17045305
81. Mozetič P, Malačič V, Turk V. A case study of sewage discharge in the shallow coastal area of the Northern Adriatic Sea (Gulf of Trieste). Mar Ecol. 2008;29: 483–494. doi: 10.1111/j.1439-0485.2008.00257.x
82. Alcoverro T, Manzanera M, Romero J. Seasonal and age-dependent variability of Posidonia oceanica (L.) Delile photosynthetic parameters. J Exp Mar Bio Ecol. 1998;230: 1–13.
83. Ruiz JM, Romero J. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar Ecol Prog Ser. 2001;215: 107–120. doi: 10.3354/meps215107
84. Pirc H. Seasonal aspects of photosynthesis in Posidonia oceanica: Influence of depth, temperature and light intensity. 1986;26: 203–212.
85. Kérouel R, Aminot A. Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Mar Chem. 1997;57: 265–275.
86. Durako MJ, Kunzelman JI. Photosynthetic characteristics of Thalassia testudinum measured in situ by pulse-amplitude modulated (PAM) fluorometry: Methodological and scale-based considerations. Aquat Bot. 2002;73: 173–185. doi: 10.1016/S0304-3770(02)00020-7
87. Gera A, Alcoverro T, Mascaró O, Pérez M, Romero J. Exploring the utility of Posidonia oceanica chlorophyll fluorescence as an indicator of water quality within the European Water Framework Directive. Environ Monit Assess. 2012;184: 3675–3686. doi: 10.1007/s10661-011-2215-3 21785841
88. Zieman JC. Methods for the study of the growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture. 1974;4: 139–143. doi: 10.1016/0044-8486(74)90029-5
89. Alcoverro T, Manzanera M, Romero J. Annual metabolic carbon balance of the seagrass Posidonia oceanica: The importance of carbohydrate reserves. Mar Ecol Prog Ser. 2001;211: 105–116. doi: 10.3354/meps211105
90. Short FT, Duarte CM. Methods for the measurement of seagrass growth and production. Global Seagrass Research Methods. 2001. pp. 155–182. doi: 10.1016/B978-044450891-1/50009-8
91. Anderson MJ. A new method for non parametric multivariate analysis of variance. Austral Ecol. 2001;26: 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x
92. Anderson MJ, Gorley RN, Clarke KR. PERMANOVAþ for PRIMER: Guide to Software and Statistical Methods. Primer-E, Plymouth. 2008.
93. Clarke KR, Gorley RN. Primer v6: User Manual/Tutorial. Primer-E, Plymouth. 2006.
94. Marín-Guirao L, Sandoval-Gil JM, Bernardeau-Esteller J, Ruiz JM, Sánchez-Lizaso JL. Responses of the Mediterranean seagrass Posidonia oceanica to hypersaline stress duration and recovery. Mar Environ Res. 2013;84: 60–75. doi: 10.1016/j.marenvres.2012.12.001 23306019
95. Ralph PJ, Gademann R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82: 222–237. doi: 10.1016/j.aquabot.2005.02.006
96. Campbell S, Miller C, Steven A, Stephens A. Photosynthetic responses of two temperate seagrasses across a water quality gradient using chlorophyll fluorescence. J Exp Mar Bio Ecol. 2003;291: 57–78. doi: 10.1016/S0022-0981(03)00090-X
97. Duarte B, Marques JC, Caçador I. Ecophysiological response of native and invasive Spartina species to extreme temperature events in Mediterranean marshes. Biol Invasions. 2016; 2189–2205. doi: 10.1007/s10530-015-0958-4
98. Ashraf M, Harris PJC. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51: 163–190. doi: 10.1007/s11099-013-0021-6
99. Pagès JF, Pérez M, Romero J. Sensitivity of the seagrass Cymodocea nodosa to hypersaline conditions: A microcosm approach. J Exp Mar Bio Ecol. 2010;386: 34–38. doi: 10.1016/j.jembe.2010.02.017
100. Ceccherelli G, Oliva S, Pinna S, Piazzi L, Procaccini G, Marin-Guirao L, et al. Seagrass collapse due to synergistic stressors is not anticipated by phenological changes. Oecologia. 2018;186: 1137–1152. doi: 10.1007/s00442-018-4075-9 29357032
101. Roca G, Alcoverro T, Krause-Jensen D, Balsby TJS, Van Katwijk MM, Marbà N, et al. Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. Ecol Indic. 2016;63: 310–323. doi: 10.1016/j.ecolind.2015.12.007
102. Pagès JF, Smith TM, Tomas F, Sanmartí N, Boada J, De Bari H, et al. Contrasting effects of ocean warming on different components of plant-herbivore interactions. Mar Pollut Bull. 2018;134: 55–65. doi: 10.1016/j.marpolbul.2017.10.036 29074253
103. Traboni C, Mammola SD, Ruocco M, Ontoria Y, Ruiz JM, Procaccini G, et al. Investigating cellular stress response to heat stress in the seagrass Posidonia oceanica in a global change scenario. Mar Environ Res. 2018;141: 12–23. doi: 10.1016/j.marenvres.2018.07.007 30077343
104. Tutar O, Marín-Guirao L, Ruiz JM, Procaccini G. Antioxidant response to heat stress in seagrasses. A gene expression study. Mar Environ Res. 2017;132: 94–102. doi: 10.1016/j.marenvres.2017.10.011 29126631
105. Alcoverro T, Romero J, Duarte CM, López NI. Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Mar Ecol Ser. 1997;146: 155–161. doi: 10.3354/meps146155
106. Leoni V, Vela A, Pasqualini V, Pergent-Martini C, Pergent G. Effects of experimental reduction of light and nutrient enrichments (N y P) on seagrasses: a review. Aquat Conserv Mar Freshw Ecosyst. 2008;18: 202–220. doi: 10.1002/aqc
107. Villazán B, Salo T, Brun FG, Vergara JJ, Pedersen MF. High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina. Mar Ecol Prog Ser. 2015;536: 149–162. doi: 10.3354/meps11435
108. Jordà G, Marbà N, Duarte CM. Mediterranean seagrass vulnerable to regional climate warming. Nat Clim Chang. 2012;2: 821–824. doi: 10.1038/nclimate1533
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania