Simultaneous transcriptome analysis of oil palm clones and Phytophthora palmivora reveals oil palm defense strategies
Autoři:
Kelly Avila-Mendez aff001; Ávila Rodrigo aff001; Leonardo Araque aff001; Hernán Mauricio Romero aff001
Působiště autorů:
Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
aff001; Department of Biology, Universidad Nacional de Colombia, Bogotá, Colombia
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222774
Souhrn
Phytophthora palmivora is an oomycete that causes oil palm bud rot disease. To understand the molecular mechanisms of this disease, palm clones with contrasting responses (Ortet 34, resistant and Ortet 57, susceptible) were inoculated with P. palmivora, and RNAseq gene expression analysis was performed. The transcriptome was obtained by sequencing using Illumina HiSeq2500 technology during the asymptomatic phase (24, 72 and 120 hours postinfection, hpi). A simultaneous analysis of differentially expressed gene (DEG) profiles in palm and P. palmivora was carried out. Additionally, Gene Ontology (GO) and gene network analysis revealed differences in the transcriptional profile of the two ortets, where a high specificity of the pathogen to colonize the susceptible ortet was found. The transcriptional analysis provided an overview of the genes involved in the recognition and signaling of this pathosystem, where different transcription factors, phytohormones, proteins associated with cell wall hardening and nitrogen metabolism contribute to the resistance of oil palm to P. palmivora. This research provides a description of the molecular response of oil palm to P. palmivora, thus becoming an important source of molecular markers for the study of genotypes resistant to bud rot disease.
Klíčová slova:
Gene expression – Plant pathogens – Pathogens – Transcription factors – DNA transcription – Oil palm – Vegetable oils
Zdroje
1. Vijay V, Pimm SL, Jenkins CN, Smith SJ. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss. PloS one. 2016;11(7):e0159668. doi: 10.1371/journal.pone.0159668 Vijay2016. 27462984
2. Fedepalma. Statistical Yearbook 2018. Bogota, Colombia: Federación Colombiana de Cultivadores de Palma de Aceite; 2018. 208 p.
3. Ma Latifah. Cross-infectivity of oil palm by Phytophthora spp. isolated from perennial crops in Malaysia. For Pathol. 2017;47(6):1–6. doi: 10.1111/efp.12374 Latifah2017.
4. Sundram S, Intan-Nur AMA. South American Bud rot: A biosecurity threat to South East Asian oil palm. Crop Protect. 2017;101:58–67. doi: 10.1016/j.cropro.2017.07.010 Sundram2017.
5. Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of filamentous plant pathogens: commonalities amid diversity. Microbiol Mol Biol Rev. 2017;81(2):e00066–16. doi: 10.1128/MMBR.00066-16 28356329
6. Coaker G. Pathogen Specialization. science. 2014;343(6170):496–7. doi: 10.1126/science.1250171 24482473
7. Kong P, Hong C. Soil bacteria as sources of virulence signal providers promoting plant infection by Phytophthora pathogens. Scientific reports. 2016;6:33239. doi: 10.1038/srep33239 27616267
8. Chen X-R, Huang S-X, Zhang Y, Sheng G-L, Li Y-P, Zhu F. Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Mol Genet Genomics. 2018:1–13.
9. Evangelisti E, Rey T, Schornack S. Cross-interference of plant development and plant-microbe interactions. Curr Opin Plant Biol. 2014;20:118–26. doi: 10.1016/j.pbi.2014.05.014 Evangelisti2014. 24922556
10. Sarria G, Martinez G, Varon F, Drenth A, Guest D. Histopathological studies of the process of Phytophthora palmivora infection in oil palm. Eur J Plant Pathol. 2016;145(1):39–51. doi: 10.1007/s10658-015-0810-9 Sarria2016.
11. Torres G, Sarria G, Martinez G, Varon F, Drenth A, Guest D. Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Phytopathology. 2016;106(4):320–9. doi: 10.1094/PHYTO-09-15-0243-RVW Torres2016. 26714102
12. Ávila-Méndez K, Avila-Diazgranados R, Pardo A, Herrera M, Sarria G, Romero HM. Response of in vitro obtained oil palm and interspecific OxG hybrids to inoculation with Phytophthora palmivora. For Pathol. 2019;0(0):e12486. doi: 10.1111/efp.12486
13. Gil-Bedoya J. Genomic variability of Phytophthora palmivora isolates from different oil palm cultivation regions in Colombia [M.Sc.]. Bogota: Universidad de los Andes; 2019.
14. Chan PL, Rose RJa. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture. PLoS ONE. 2014;9(6). doi: 10.1371/journal.pone.0099774 Chan2014. 24927412
15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-$\Delta$ $\Delta$CT method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 Livak2001. 11846609
16. Sharpee WC, Dean RA. Form and function of fungal and oomycete effectors. Fungal Biology Reviews. 2016;30(2):62–73. doi: 10.1016/j.fbr.2016.04.001 Sharpee2016.
17. Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, Thatcher LF, et al. Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol Plant-Microbe Interact. 2011;24(6):733–48. doi: 10.1094/MPMI-08-10-0194 21281113
18. Llorente F, Muskett P, Sánchez-Vallet A, López G, Ramos B, Sánchez-Rodríguez C, et al. Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Molecular plant. 2008;1(3):496–509. doi: 10.1093/mp/ssn025 19825556
19. Shigenaga AM, Argueso CT, editors. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol; 2016: Elsevier.
20. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol. 2007;17(20):1784–90. doi: 10.1016/j.cub.2007.09.025 17919906
21. Fu J, Wang S. Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci. 2011;2(November):74. doi: 10.3389/fpls.2011.00074 Fu2011. 22639609
22. Naseem M, Kaltdorf M, Dandekar T. The nexus between growth and defence signalling: Auxin and cytokinin modulate plant immune response pathways. J Exp Bot. 2015;66(16):4885–96. doi: 10.1093/jxb/erv297 Naseem2015. 26109575
23. Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K. Evolution of Hormone Signaling Networks in Plant Defense. Annu Rev Phytopathol. 2017;55(1):annurev—phyto—080516—35544. doi: 10.1146/annurev-phyto-080516-035544 Berens2017. 28645231
24. Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol. 2016;212(3):627–36. doi: 10.1111/nph.14078 Shine2016. 27411159
25. Camejo D, Guzmn-Cedeo n, Moreno A. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol Biochem. 2016;103:10–23. doi: 10.1016/j.plaphy.2016.02.035 Camejo2016. 26950921
26. de Vries S, von Dahlen JK, Uhlmann C, Schnake A, Kloesges T, Rose LE. Signatures of selection and host-adapted gene expression of the Phytophthora infestans RNA silencing suppressor PSR2. Mol Plant Pathol. 2017;18(1):110–24. doi: 10.1111/mpp.12465 DeVries2017. 27503598
27. Derevnina L, Dagdas YFa. Tansley insight Nine things to know about elicitins. New Phytol. 2016;212(4):888–95. doi: 10.1111/nph.14137 Derevnina2016. 27582271
28. Yang F, Li W, Jrgensen HJL. Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction. PLoS ONE. 2013;8(11):1–15. doi: 10.1371/journal.pone.0081606 Yang2013. 24303057
29. Asai S, Shirasu K. Plant cells under siege: Plant immune system versus pathogen effectors. Curr Opin Plant Biol. 2015;28:1–8. doi: 10.1016/j.pbi.2015.08.008 Asai2015. 26343014
30. Li B, Meng X, Shan L, He P. Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host and Microbe. 2016;19(5):641–50. doi: 10.1016/j.chom.2016.04.011 Li2016. 27173932
31. Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant. 2015;8(4):521–39. doi: 10.1016/j.molp.2014.12.022 Bigeard2015. 25744358
32. Macho AP, Zipfel C. Plant PRRs and the activation of innate immune signaling. Mol Cell. 2014;54(2):263–72. doi: 10.1016/j.molcel.2014.03.028 Macho2014. 24766890
33. Birkenbihl RP, Liu S, Somssich IE. Transcriptional events defining plant immune responses. Curr Opin Plant Biol. 2017;38:1–9. doi: 10.1016/j.pbi.2017.04.004 Birkenbihl2017. 28458046
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania