Reconstructing birth in Australopithecus sediba
Autoři:
Natalie M. Laudicina aff001; Frankee Rodriguez aff001; Jeremy M. DeSilva aff003
Působiště autorů:
Department of Anthropology, Boston University, Boston, Massachusetts, United States of America
aff001; Biomedical Sciences Department, Grand Valley State University, Grand Rapids, Michigan, United States of America
aff002; Department of Anthropology, Dartmouth College, Hanover, New Hampshire, United States of America
aff003; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221871
Souhrn
Hominin birth mechanics have been examined and debated from limited and often fragmentary fossil pelvic material. Some have proposed that birth in the early hominin genus Australopithecus was relatively easy and ape-like, while others have argued for a more complex, human-like birth mechanism in australopiths. Still others have hypothesized a unique birth mechanism, with no known modern equivalent. Preliminary work on the pelvis of the recently discovered 1.98 million-year-old hominin Australopithecus sediba found it to possess a unique combination of Homo and Australopithecus-like features. Here, we create a composite pelvis of Australopithecus sediba to reconstruct the birth process in this early hominin. Consistent with other hominin species, including modern humans, the fetus would enter the pelvic inlet in a transverse direction. However, unlike in modern humans, the fetus would not need additional rotations to traverse the birth canal. Further fetal rotation is unnecessary even with a Homo-like pelvic midplane expansion, not seen in earlier hominin species. With a birth canal shape more closely associated with specimens from the genus Homo and a lack of cephalopelvic or shoulder constraints, we therefore find evidence to support the hypothesis that the pelvic morphology of Australopithecus sediba is a result of locomotor, rather than strictly obstetric constraints.
Klíčová slova:
Biology and life sciences – Social sciences – Developmental biology – Anatomy – Medicine and health sciences – Neonates – Women's health – Maternal health – Birth – Obstetrics and gynecology – Earth sciences – Musculoskeletal system – Skeleton – Pelvis – Cranium – Paleontology – Anthropology – Ischium – Paleoanthropology – Archaic humans – Hominids – Hominins – Australopithecus – Physical anthropology
Zdroje
1. Washburn SL. Tools and human evolution. Sci Am. 1960 Sep;203:62–75.
2. Rosenberg KR. The evolution of modern human childbirth. Am J Phys Anthropol. 1992;35(S15):89–124.
3. Rosenberg KR, Trevathan W. Birth, obstetrics and human evolution. BJOG. 2002 Nov 1;109(11):1199–1206. 12452455
4. Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H. Metabolic hypothesis for human altriciality. Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15212–15216. doi: 10.1073/pnas.1205282109 22932870
5. Warrener AG, Lewton KL, Pontzer H, Lieberman DE. A wider pelvis does not increase locomotor cost in humans, with implications for the evolution of childbirth. PloS one. 2015 Mar 11;10(3):e0118903. doi: 10.1371/journal.pone.0118903 25760381
6. Dunsworth H, Eccleston L. The evolution of difficult childbirth and helpless hominin infants. Annu Rev Anthropol. 2015 Oct 21;44:55–69.
7. Dunsworth HM. The ‘obstetric dilemma’unraveled. Costly and cute: the role of the helpless infant in human evolution. Santa Fe: School for Advanced Research. p. 2016:29–50.
8. Dunsworth HM. There is no" obstetrical dilemma": Towards a braver medicine with fewer childbirth interventions. Perspect Biol Med. 2018;61(2):249–63. doi: 10.1353/pbm.2018.0040 30146522
9. Hirata S, Fuwa K, Sugama K, Kusunoki K, Takeshifta H. Mechanisms of birth and chimpanzees: humans are not unique among primates. Biol Lett. 2011 Apr 20;7(5):686–688. doi: 10.1098/rsbl.2011.0214 21508028
10. Jolly A. Hour of birth in primates and man. Folia Primatol. 1972;18(1–2):108–121.
11. Jolly A, Primate birth hour. Int Zoo Yearb. 1973;13:391–397.
12. Trevathan WR. Human birth: an evolutionary perspective. New York: Aldine De Gruyter; 1987.
13. Elder JH, Yerkes RM. Chimpanzee births in captivity: a typical case history and report of sixteen births. Proc. R. Soc. Lond. B. 1936 Jul 1;120(819):409–21.
14. Trevathan W, Rosenberg K. The shoulders follow the head: postcranial constraints on human childbirth. J. Hum. Evol. 2000;39:583–586. doi: 10.1006/jhev.2000.0434 11102269
15. DeSilva JM, Laudicina NM, Rosenberg KR, Trevathan WR. Neonatal shoulder width suggests a semirotational, oblique birth mechanism in Australopithecus afarensis. Anat Rec. 2017 May;300(5):890–899.
16. Abitbol MM. Ontogeny and evolution of pelvic diameters in anthropoid primates and in Australopithecus afarensis (AL 288–1). Am J Phys Anthropol. 1991;85:135–148. doi: 10.1002/ajpa.1330850203 1909098
17. Tague RG, Lovejoy CO. The obstetric pelvis of A.L. 288–1 (Lucy). J. Hum. Evol. 1986;15: 165–175.
18. Joulin D. Anatomie et physiologie comparée du bassin des mammifères. Archives générales de Médecine. 1864:29–46.
19. Trevathan WR. Fetal emergence patterns in evolutionary perspective. Am Anthropol. 1988 Sep;90(3):674–81.
20. American College of Obstetricians and Gynecologists. Shoulder Dystocia. ACOG Practice Pattern No. 40. ACOG[Internet]. 2002.
21. Gherman RB, Ouzounian JG, Goodwin TM. Obstetric maneuvers for shoulder dystocia and associated fetal morbidity. Am J Obstet Gynecol. 1998 Jun;178(6):1126–1130. doi: 10.1016/s0002-9378(98)70312-6 9662290
22. Leutenegger W. Newborn size and pelvic dimensions of Australopithecus. Nature. 1972;240: 568–569. doi: 10.1038/240568a0 4568405
23. Berge C, Orban-Segebarth R, Schmid, P. Obstetrical interpretation of the australopithecine pelvic cavity. J Hum Evol. 1984 Nov;13(7):573–587.
24. McHenry HM. The first bipeds: a comparison of the A. afarensis and A. africanus postcranium and implications for the evolution of bipedalism. J Hum Evol. 1986 Mar;15(3):177–191.
25. Häusler M, Schmid P. Comparison of the pelves of Sts 14 and AL 288–1: implications for birth and sexual dimorphism in australopithecines. J Hum Evol. 1995 Oct;29(4):363–383.
26. Jordaan HVF. Newborn/adult brain ratios in hominid evolution. Am J Phys Anthropol. 1976 Mar;44(2):271–278. doi: 10.1002/ajpa.1330440209 816206
27. Tague RG, Lovejoy CO. AL 288–1—Lucy or Lucifer: gender confusion in the Pliocene. J Hum Evol. 1998 Jul;35(1):75–94. doi: 10.1006/jhev.1998.0223 9680468
28. Wood BA, Quinney PS. Assessing the pelvis of AL 288–1. J Hum Evol. 1996 Dec;31(6): 563–568.
29. Wells JC, DeSilva JM, Stock JT. The obstetric dilemma: an ancient game of Russian roulette, or a variable dilemma sensitive to ecology? Am J Phys Anthropol. 2012;149(S55):40–71.
30. Berge C, Goularas D. A new reconstruction of Sts 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. J Hum Evol. 2010 Mar;58(3):262–272. doi: 10.1016/j.jhevol.2009.11.006 20138331
31. Leutenegger W. Functional aspects of pelvic morphology in simian primates. J Hum Evol. 1974 May;3(3):207–222.
32. Leutenegger W. Neonatal brain size and neurocranial dimensions in Pliocene hominids: implications for obstetrics. J Hum Evol. 1987 Mar;16(3):291–296.
33. Claxton AG, Hammond AS, Romano J, Oleinik E, DeSilva JM. Virtual reconstruction of the Australopithecus africanus pelvis Sts 65 with implications for obstetrics and locomotion. J Hum Evol. 2016 Jul 26;99:10–24. doi: 10.1016/j.jhevol.2016.06.001 27650578
34. Simpson SW, Quade J, Levin NE, Butler R, Dupont-Nivet G, Everett M, et al. A female Homo erectus pelvis from Gona, Ethiopia. Science. 2008 Nov 14;323(5904):1089–1092.
35. Ruff C. Body size and body shape in early hominins–implications of the Gona pelvis. J Hum Evol. 2010 Feb 1;58(2):166–78. doi: 10.1016/j.jhevol.2009.10.003 19945140
36. Ponce de León MS, Golovanova L, Doronichev V, Romanova G, Akazawa T, Kondo O, Ishida H, Zollikofer CP. Neanderthal brain size at birth provides insights into the evolution of human life history. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13764–8. doi: 10.1073/pnas.0803917105 18779579
37. Weaver TD, Hublin JJ. Neandertal birth canal shape and the evolution of human childbirth. Proc Natl Acad Sci U S A. 2009 Apr 17:pnas-0812554106.
38. Trevathan WR. The evolution of bipedalism and assisted birth. Med Anthropol Q. 1996 Jun;10(2):287–90. 8744088
39. Berger LR, De Ruiter DJ, Churchill SE, Schmid P, Carlson KJ, Dirks PH, et al. Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science. 2010 Apr 9; 328(5975):195–204. doi: 10.1126/science.1184944 20378811
40. Dirks PH, Kibii JM, Kuhn BF, Steininger C, Churchill SE, Kramers JD, et al. Geological setting and age of Australopithecus sediba from southern Africa. Science. 2010 Apr 9;328(5975):205–8. doi: 10.1126/science.1184950 20378812
41. Carlson KJ, Stout D, Jashashvili T, de Ruiter DJ, Tafforeau P, Carlson K, et al. The endocast of MH1, Australopithecus sediba. Science. 2011 Sep 9;333(6048):1402–1407. doi: 10.1126/science.1203922 21903804
42. Kibii JM, Churchill SE, Schmid P, Carlson KJ, Reed ND, de Ruiter DJ, et al. A partial pelvis of Australopithecus sediba. Science. 2011 Sep 9;333(6048):1407–1411. doi: 10.1126/science.1202521 21903805
43. Schultz AH. Sex differences in the pelves of primates. Am J Phys Anthropol. 1949 Sep;7(3):401–24. 15392785
44. Bonmatí A, Gómez-Olivencia A, Arsuaga JL, Carretero JM, Gracia A, Martínez I, et al. Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18386–18391. doi: 10.1073/pnas.1012131107 20937858
45. DeSilva JM, Holt KG, Churchill SE, Carlson KJ, Walker CS, Zipfel B, Berger LR. The lower limb and mechanics of walking in Australopithecus sediba. Science. 2013 Apr 12;340(6129):1232999. doi: 10.1126/science.1232999 23580534
46. Lovejoy CO, Latimer BM, Spurlock L, Haile-Selassie Y. The pelvic girdle and limb bones of KSD-VP-1/1. InThe Postcranial Anatomy of Australopithecus afarensis 2016 (pp. 155–178). Springer, Dordrecht.
47. Carmeron N, Bogin B, Bolter D, Berger LR. The postcranial skeletal maturation of Australopithecus sediba. Am J Phys Anthropol. 2017 Jul;163(63):633–640.
48. Churchill SE, Kibii JM, Schmid P, Reed ND, Berger LR. The pelvis of Australopithecus sediba. PaleoAnthropology. 2018 July 27; 334−356.
49. Becker I, Woodley SJ, Stringer MD. The adult human pubic symphysis: a systematic review. Journal of anatomy. 2010 Nov;217(5):475–87. doi: 10.1111/j.1469-7580.2010.01300.x 20840351
50. Haeusler M, Fremondiere P, Fornai C, Frater N, Mathews S, Thollon L, Marchal F. Virtual reconstruction of the MH2 pelvis (Australopithecus sediba) and obstetrical implications. In Am J Phys Anthropol. 2016 Mar 1 (Vol. 159, pp. 165–165).
51. Fremondiere P, Thollon L, Marchal F, Frater N, Mathews S, Haeusler M. Estimating fetal-pelvic disproportion in Australopithecines, with special reference to the MH2 (Australopithecus sediba) pelvis. In Am J Phys Anthropol. 2016 Mar 1 (Vol. 159, pp. 148–148).
52. DeSilva JM, Lesnik JJ. Brain size at birth throughout human evolution: a new method for estimating neonatal brain size in hominins. J Hum Evol. 2008 Dec; 55(6):1064–1074. doi: 10.1016/j.jhevol.2008.07.008 18789811
53. Bogin B. Evolutionary perspective on human growth. Annu Rev Anthropol. 1999 Oct;28;109–153. doi: 10.1146/annurev.anthro.28.1.109 12295621
54. Leigh SR. Brain growth, life history, and cognition in primate and human evolution. Am J Primatol. 2004 Mar;62(3):139–164. doi: 10.1002/ajp.20012 15027089
55. Churchill SE, Holliday TW, Carlson KJ, Jashashvili T, Macias ME, Mathews S, et al. The upper limb of Australopithecus sediba. Science. 2013 Apr 12;340(6129):1233477. doi: 10.1126/science.1233477 23580536
56. Ruff CB. Biomechanics of the hip and birth in early Homo. Am J Phys Anthropol. 1995 Dec;98(4):527–74. doi: 10.1002/ajpa.1330980412 8599386
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania