The extraordinary osteology and functional morphology of the limbs in Palorchestidae, a family of strange extinct marsupial giants
Autoři:
Hazel L. Richards aff001; Rod T. Wells aff003; Alistair R. Evans aff001; Erich M. G. Fitzgerald aff002; Justin W. Adams aff002
Působiště autorů:
School of Biological Sciences, Monash University, Clayton, Victoria, Australia
aff001; Geosciences, Museums Victoria, Melbourne, Victoria, Australia
aff002; Ecology and Evolution, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
aff003; Palaeontology, South Australian Museum, Adelaide, South Australia, Australia
aff004; Department of Anatomy & Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221824
Souhrn
The Palorchestidae are a family of marsupial megafauna occurring across the eastern Australian continent from the late Oligocene through to their extinction in the Late Pleistocene. The group is known for their odd ‘tapir-like’ crania and distinctive clawed forelimbs, but their appendicular anatomy has never been formally described. We provide the first descriptions of the appendicular skeleton and body mass estimates for three palorchestid species, presenting newly-identified, and in some cases associated, material of mid-Miocene Propalorchestes, Plio-Pleistocene Palorchestes parvus and Pleistocene Palorchestes azael alongside detailed comparisons with extant and fossil vombatiform marsupials. We propose postcranial diagnostic characters at the family, genus and species level. Specialisation in the palorchestid appendicular skeleton evidently occurred much later than in the cranium and instead correlates with increasing body size within the lineage. We conclude that palorchestid forelimbs were highly specialised for the manipulation of their environment in the acquisition of browse, and that they may have adopted bipedal postures to feed. Our results indicate palorchestids were bigger than previously thought, with the largest species likely weighing over 1000 kg. Additionally, we show that P. azael exhibits some of the most unusual forelimb morphology of any mammal, with a uniquely fixed humeroulnar joint unlike any of their marsupial kin, living or extinct.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Animals – Anatomy – Medicine and health sciences – Earth sciences – Biological tissue – Connective tissue – Musculoskeletal system – Body limbs – Arms – Skeleton – Humerus – Skeletal joints – Bone – Prehistoric animals – Diprotodon – Paleontology – Paleobiology – Paleozoology – Vertebrate paleontology
Zdroje
1. Wroe S, Field JH, Archer M, Grayson DK, Price GJ, Louys J, et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proceedings of the National Academy of Sciences. 2013;110(22):8777–81.
2. Smith FA, Smith REE, Lyons SK, Payne JL. Body size downgrading of mammals over the late Quaternary. Science. 2018;360(6386):310–3. doi: 10.1126/science.aao5987 29674591
3. Woods JT. The extinct marsupial genus Palorchestes Owen. Memoirs of the Queensland Museum. 1958;13(4):177–93.
4. Archer M, Bartholomai A. Tertiary mammals of Australia: A synoptic review. Alcheringa. 1978;2(1):1–19.
5. Black KH, Archer M, Hand SJ, Godthelp H. The rise of Australian marsupials: A synopsis of biostratigraphic, phylogenetic, palaeoecologic and palaeobiogeographic understanding. In: Talent JA, editor. Earth and Life. Netherlands: Springer; 2012. p. 983–1078.
6. Murray P. Palaeontology and palaeobiology of wombats. In: Wells RT, Pridmore PA, editors. Wombats. Adelaide, South Australia: Surrey, Beatty and Sons; 1998. p. 1–33.
7. Black K. Diversity, phylogeny and biostratigraphy of diprotodontoids (Marsupialia: Diprotodontidae, Palorchestidae) from the Riversleigh World Heritage Area. PhD thesis, University of New South Wales. 2008.
8. Gillespie AK, Archer M, Hand SJ. A tiny new marsupial lion (Marsupialia, Thylacoleonidae) from the early Miocene of Australia. Palaeontologia Electronica. 2016;19(2):1–25.
9. Wells R. Fossil mammals in the reconstruction of Quaternary environments with examples from the Australian fauna. In: Guppy J, editor. Biology and Quaternary Environments. Canberra, ACT: Australian Academy of Science; 1978. p. 103–24.
10. Flannery TF, Archer M. Palorchestes: Large and small palorchestids. In: Rich PV, Van Tets GF, Knight F, editors. Kadimakara: Extinct Vertebrates of Australia. Melbourne, Victoria: Pioneer Design Studio; 1985. p. 234–9.
11. Coombs MC. Large mammalian clawed herbivores: A comparative study. Transactions of the American Philosophical Society. 1983;73(7):1–96.
12. Lee AK, Carrick FN. Phascolarctidae. In: Walton DW, Richardson BJ, editors. Fauna of Australia. Canberra: AGPS; 1989.
13. Strahan R, editor. The Mammals of Australia. Chatswood, NSW: Reed Books; 1995.
14. Finch M, Freedman L. Functional morphology of the limbs of Thylacoleo carnifex Owen (Thylacoleonidae, Marsupialia). Australian Journal of Zoology. 1988;36(3):251–72.
15. Wroe S, Myers T, Seebacher F, Kear B, Gillespie A, Crowther M, et al. An alternative method for predicting body mass: The case of the Pleistocene marsupial lion. Paleobiology. 2003;29(3):403–11.
16. Anderson JF, Hall‐Martin A, Russell DA. Long‐bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology. 1985;207(1):53–61.
17. Stirling E. On the identity of Phascolomys (Phascolonus) gigas, Owen, and Sceparnodon ramsayi, Owen: A description of some of its remains. Memoirs of the Royal Society South Australia. 1913;1:127–78.
18. Scott GG, Richardson KC. Appendicular osteological differences between Lasiorhinus latifrons Owen 1845 and Vombatus ursinus Shaw 1800 (Marsupialia: Vombatidae). Records of the South Australian Museum. 1988;22:95–102.
19. Owen R. On the osteology of the Marsupialia (Part IV): Bones of the trunk and limbs, Phascolomys. The Transactions of the Zoological Society of London. 1874;8(8):483–500.
20. Black KH, Camens AB, Archer M, Hand SJ. Herds overhead: Nimbadon lavarackorum (Diprotodontidae), heavyweight marsupial herbivores in the Miocene forests of Australia. PLOS ONE. 2012;7(11):e48213. doi: 10.1371/journal.pone.0048213 23185250
21. Murray P, Megirian D, Rich T, Plane M, Vickers-Rich P. Neohelos stirtoni, a new species of Zygomaturinae (Diprotodonta: Marsupialia) from the mid-Tertiary of the Northern Territory, Australia. Records of the Queen Victoria Museum and Art Gallery. 2000;105:1–47.
22. Murray P, Megirian D, Rich T, Plane M, Black K, Archer M, et al. Morphology, systematics, and evolution of the marsupial genus Neohelos Stirton (Diprotodontidae, Zygomaturinae). Museums and Art Galleries of the Northern Territory Research Report. 2000;6(6):1–141.
23. Scott HH. A Monograph of Nototherium Tasmanicum: Genus Owen: sp. nov. Hobart, Tasmania: J. Vail, Government Printer; 1915.
24. Munson CJ. Postcranial Descriptions of Ilaria And Ngapakaldia (Vombatiformes, Marsupialia) and the Phylogeny of the Vombatiformes Based on Postcranial Morphology. Berkeley, California: University of California Press; 1992. 1–99 p.
25. Long JA, Archer M, Flannery T, Hand S. Prehistoric Mammals of Australia and New Guinea: One Hundred Million Years of Evolution: Johns Hopkins University Press; 2002.
26. Owen R. On the Fossil Mammals of Australia. Part III. Diprotodon australis, Owen. Proceedings of the Royal Society of London Series I. 1869;18:196.
27. Wroe S, Crowther M, Dortch J, Chong J. The size of the largest marsupial and why it matters. Proceedings of the Royal Society of London Series B: Biological Sciences. 2004; 271(Suppl 3):S34–6.
28. Murray P. Primitive marsupial tapirs (Propalorchestes novaculacephalus Murray and P. ponticulus sp. nov.) from the mid-Miocene of north Australia (Marsupialia: Palorchestidae). The Beagle: Records of the Museums and Art Galleries of the Northern Territory. 1990;7(2):39–51.
29. Johnson C. Australia's Mammal Extinctions: A 50,000-Year History. Port Melbourne: Cambridge University Press; 2006.
30. Pledge NS. Occurrences of Palorchestes species (Marsupialia: Palorchestidae) in South Australia. Records of the South Australian Museum. 1991;25(2):161–74.
31. Arena DA, Travouillon KJ, Beck RM, Black KH, Gillespie AK, Myers TJ, et al. Mammalian lineages and the biostratigraphy and biochronology of Cenozoic faunas from the Riversleigh World Heritage Area, Australia. Lethaia. 2016;49(1):43–60.
32. DeSantis LRG, Field JH, Wroe S, Dodson JR. Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change. Paleobiology. 2017;43(2):1–15.
33. Mackness BS. Reconstructing Palorchestes (Marsupialia: Palorchestidae)—from giant kangaroo to marsupial 'tapir'. Proceedings of the Linnean Society of New South Wales. 2008;130:21–36.
34. Owen R. On the Fossil Mammals of Australia. Family Macropodidae. Genera Macropus, Pachysiagon, Leptosiagon, Procoptodon, and Palorchestes—Part IX. Proceedings of the Royal Society of London. 1873:386–7.
35. Fletcher H. Palorchestes—Australia's extinct giant kangaroo. Australian Museum Magazine. 1945;8(11):361–5.
36. Trusler P. Cranial reconstruction of Palorchestes azael. PhD thesis, Monash University. 2016.
37. Trusler PW, Sharp AC. Description of new cranial material of Propalorchestes (Marsupialia: Palorchestidae) from the middle Miocene camfield beds, Northern Territory, Australia. Memoirs of Museum Victoria. 2016;74(July):291–324.
38. Murray P. The Pleistocene megafauna of Australia. In: Vickers-Rich P, Monaghan JM, Baird RF, Rich TH, editors. Vertebrate Palaeontology of Australasia. Melbourne, Victoria: Pioneer Design Studio; 1991. p. 1071–164.
39. Davis A, Archer M. Palorchestes azael (Mammalia, Palorchestidae) from the late Pleistocene Terrace Site Local Fauna, Riversleigh, northwestern Queensland. Memoirs of the Queensland Museum. 1997;41:315–20.
40. Black K, Mackness B. Diversity and relationships of diprotodontoid marsupials. Australian Mammalogy. 1999;21:20–1.
41. Black KH, Hand SJ. First crania and assessment of species boundaries in Nimbadon (Marsupialia: Diprotodontidae) from the middle Miocene of Australia. American Museum Novitates. 2010;3678:1–60.
42. Price GJ. Taxonomy and palaeobiology of the largest-ever marsupial, Diprotodon Owen, 1838 (Diprotodontidae, Marsupialia). Zoological Journal of the Linnean Society. 2008;153(2):369–97.
43. Price GJ, Hocknull S. A small adult Palorchestes (Marsupialia, Palorchestidae) from the Pleistocene of the Darling Downs, southeast Queensland. Memoirs of the Queensland Museum. 2005;51(1):202–.
44. Mackness B. Palorchestes selestiae, a new species of palorchestid marsupial from the early Pliocene Bluff Downs Local Fauna, northeastern Queensland. Memoirs of the Queensland Museum. 1995;38:603–10.
45. Black K. A new species of Palorchestidae (Marsupialia) from the late middle to early late Miocene Encore Local Fauna, Riversleigh, northwestern Queensland. Memoirs of the Queensland Museum. 1997;41:181–6.
46. Piper KJ. A new species of Palorchestidae (Marsupialia) from the Pliocene and early Pleistocene of Victoria. Alcheringa: An Australasian Journal of Palaeontology. 2006;30(sup1):281–94.
47. Bartholomai A. A new species of Thylacoleo and notes on some caudal vertebrae of Palorchestes azael. Memoirs of the Queensland Museum. 1962;14:33–40.
48. Young GC, Laurie JR, editors. An Australian Phanerozoic Timescale. Melbourne: Oxford University Press; 1996.
49. Shean DA. Geochronology, taxonomy and morphology of select fossils of the Buchan Caves, south-eastern Australia. MSc thesis, Monash University. 2007.
50. Marshall LG. Late Pleistocene mammals from the Keilor cranium site, southern Victoria, Australia. Memoirs of the National Museum of Victoria. 1974;35:63–86.
51. Duncan J. Megafauna at Keilor and the timing of their extinction. Australian Archaeology. 2001;53(1):16–22.
52. Joyce E, Anderson JR. Late Quaternary geology and environment at the Dry Creek archaeological sites near Keilor in Victoria, Australia. The Artefact. 1976;1(2):47–74.
53. Dunkley J, Spate A, Welch B. Wee Jasper Caves. Broadway, NSW: Australian Speleological Federation; 2010.
54. Schmidt VA, Jennings JN, Haosheng B. Dating of cave sediments at Wee Jasper, New South Wales, by magnetostratigraphy. Australian Journal of Earth Sciences. 1984;31(4):361–70.
55. Theden-Ringl F, Hislop KP, Aplin K, Grün R, Schurr MR. The chronology and environmental context of a cave deposit and associated faunal assemblage including megafauna teeth near Wee Jasper, southeastern Australia. The Holocene. 2018;28(9):1467–82.
56. Megirian D, Prideaux GJ, Murray PF, Smit N. An Australian land mammal age biochronological scheme. Paleobiology. 2010;36(4):658–71.
57. Schwartz LR. A revised faunal list and geological setting for Bullock Creek, a Camfieldian site from the Northern Territory of Australia. Memoirs of Museum Victoria. 2016;74:263–90.
58. Schaller O, Constantinescu GM. Illustrated Veterinary Anatomical Nomenclature. Stuttgart, Germany: Enke Verlag; 2007.
59. Harvey KJ, Warburton N. Forelimb musculature of kangaroos with particular emphasis on the tammar wallaby Macropus eugenii (Desmarest, 1817). Australian Mammalogy. 2010;32(1):1–9.
60. Warburton NM, Yakovleff M, Malric A. Anatomical adaptations of the hind limb musculature of tree-kangaroos for arboreal locomotion (Marsupialia: Macropodinae). Australian Journal of Zoology. 2012;60(4):246–58.
61. Warburton NM, Marchal C-R. Forelimb myology of carnivorous marsupials (Marsupialia: Dasyuridae): Implications for the ancestral body plan of the Australidelphia. The Anatomical Record. 2017;300(9):1589–608. doi: 10.1002/ar.23612 28524458
62. Ruff C. Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid primates. In: Damuth J, MacFadden BJ, editors. Body Size on Mammalian Paleobiology: Estimation and Biological Implications. New York: Cambridge University Press; 1990. p. 119–50.
63. Campione NE, Evans DC. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology. 2012;10(1):60–.
64. Hopkins SS. Estimation of body size in fossil mammals. In: Croft DA, Su D, Simpson SW, editors. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Cham, Switzerland: Springer; 2018. p. 7–22.
65. Casinos A. Bipedalism and quadrupedalism in Megatheriurn: an attempt at biomechanical reconstruction. Lethaia. 1996;29(1):87–96.
66. Campione NE. MASSTIMATE: Body mass estimation for vertebrates. R package version 13. 1.3 ed2016.
67. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria2018.
68. Murray P. Propalorchestes novaculacephalus gen. et sp. nov., a new palorchestid (Diprotodontoidea: Marsupialia) from the Middle Miocene Camfield Beds, Northern Territory, Australia. The Beagle: Records of the Museums and Art Galleries of the Northern Territory. 1986;3(1):195–211.
69. Owen R. Researches on the Fossil Remains of the Extinct Mammals of Australia: with a Notice of the Extinct Marsupials of England. London: J. Erxleben; 1877.
70. Wakefield NA. Naturalist's Diary. Croydon, Victoria: Longmans; 1967. 214 p.
71. Szalay FS. Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge: Cambridge University Press; 1994.
72. Vickers-Rich P, Rich TH, Coffa F. Wildlife of Gondwana: Dinosaurs and Other Vertebrates From the Ancient Supercontinent. Bloomington, USA: Indiana University Press; 1999.
73. Flannery TF, Gott B. The Spring Creek locality, southwestern Victoria: A late surviving megafaunal assemblage. Australian Zoologist. 1984;21(4–5):385–422.
74. Gillespie R, Camens AB, Worthy TH, Rawlence NJ, Reid C, Bertuch F, et al. Man and megafauna in Tasmania: Closing the gap. Quaternary Science Reviews. 2012;37:38–47.
75. Cockburn A, Johnson C. Patterns of growth. In: Tyndale-Biscoe C, Janssens P, editors. The Developing Marsupial: Models for Biomedical Research. Berlin: Springer-Verlag; 1988. p. 28–40.
76. Tyndale-Biscoe H. Life of Marsupials. Collingwood, Victoria: CSIRO Publishing; 2005.
77. Taylor BK. The anatomy of the forelimb in the anteater (Tamandua) and its functional implications. Journal of Morphology. 1978;157(3):347–67. doi: 10.1002/jmor.1051570307 30231602
78. White JL. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology. 1993;13(2):230–42.
79. Stock C. Cenozoic Gravigrade Edentates of Western North America: With Special Reference to the Pleistocene Megalonychinae and Mylodontidae of Rancho La Brea. Washington: Carnegie Institution of Washington; 1925. 331 p.
80. Fujiwara S, Hutchinson JR. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods. Proceedings of the Royal Society B: Biological Sciences. 2012;279(1738):2561–70. doi: 10.1098/rspb.2012.0190 22357261
81. Hildebrand M. Digging of quadrupeds. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, editors. Functional Vertebrate Morphology. Cambridge, MA: Harvard University Press; 1985. p. 89–109.
82. McAfee RK. Reassessing the taxonomy and affinities of the Mylodontinae sloths, Glossotherium and Paramylodon (Mammalia: Xenarthra: Tardigrada). PhD thesis, Northern Illinois University. 2007.
83. MacLeod N, Rose KD. Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. American Journal of Science. 1993;293(A):300.
84. Camens AB. Systematic and palaeobiological implications of postcranial morphology in the Diprotodontidae (Marsupialia). PhD thesis, Flinders Univeristy. 2010.
85. Carey SP, Camens AB, Cupper ML, Grün R, Hellstrom JC, McKnight SW, et al. A diverse Pleistocene marsupial trackway assemblage from the Victorian Volcanic Plains, Australia. Quaternary Science Reviews. 2011;30(5–6):591–610.
86. Megirian D, Murray P, Wells R. The late Miocene Ongeva local fauna of central Australia. The Beagle: Records of the Museums and Art Galleries of the Northern Territory. 1996;13:9–38.
87. Gillespie R, Fifield LK, Levchenko V, Wells R. New 14 c ages on cellulose from Diprotodon gut contents: Explorations in oxidation chemistry and combustion. Radiocarbon. 2008;50(1):75–81.
88. Windsor D, Dagg A. The gaits of the Macropodinae (Marsupialia). Journal of Zoology. 1971;163(2):165–75.
89. Toledo N, De Iuliis G, Vizcaíno SF, Bargo MS. The concept of a pedolateral pes revisited: The giant sloths Megatherium and Eremotherium (Xenarthra, Folivora, Megatheriinae) as a case study. Journal of Mammalian Evolution. 2017;25(4):525–37.
90. Stirton R. The Diprotodontidae from the Ngapakaldi Fauna, South Australia. Bulletin Australian Bureau of Mineralogical Resources. 1967;85:1–44.
91. Marshall L, Case JA, Woodburne MO. Phylogenetic relationships of the families of marsupials. Current Mammalogy. 1990;2:433–505.
92. Archer M, Hand SJ, Godthelp H. Riversleigh. Balgowlah, NSW: Reed; 1991.
93. Adams B, Crabtree P. Comparative osteology: A laboratory and field guide of common North American animals. Boston, Massachusetts: Academic Press; 2012.
94. Flannery T, Plane M. A new late Pleistocene diprotodontid (Marsupialia) from Pureni, Southern Highlands Province, Papua New Guinea. Bureau of Mineral Resources Journal of Australian Geology and Geophysics. 1986;10:65–76.
95. Fleagle JG, Anapol FC. The indriid ischium and the hominid hip. Journal of Human Evolution. 1992;22(4–5):285–305.
96. Janis CM, Buttrill K, Figueirido B. Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? PLOS ONE. 2014;9(10):e109888–e. doi: 10.1371/journal.pone.0109888 25333823
97. Dawson RS, Warburton NM, Richards HL, Milne N. Walking on five legs: Investigating tail use during slow gait in kangaroos and wallabies. Australian Journal of Zoology. 2015;63(3):192–200.
98. Wells RT, Camens AB. New skeletal material sheds light on the palaeobiology of the Pleistocene marsupial carnivore, Thylacoleo carnifex. PLOS ONE. 2018;13(12):e0208020. doi: 10.1371/journal.pone.0208020 30540785
99. Murray P. Extinctions downunder: A bestiary of extinct Australian late Pleistocene monotremes and marsupials. In: Martin PS, Klein RG, editors. Quaternary Extinctions: A Prehistoric Revolution. Tuscon, Arizona: The University of Arizona Press; 1984. p. 600–28.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania