#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Low-level sensory processes play a more crucial role than high-level cognitive ones in the size-weight illusion


Autoři: Cody G. Freeman aff001;  Elizabeth J. Saccone aff001;  Philippe A. Chouinard aff001
Působiště autorů: Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222564

Souhrn

The size-weight illusion (SWI) pertains to the experience of perceiving the smaller of two equally weighted objects as heavier. Competing theories to explain the illusion can be generally grouped into cognitive and sensory theories, which place more importance on top-down processing of cognitive expectations and bottom-up processing of sensory information about the size and weight of objects, respectively. The current study examined the relative contribution of these two general explanations. This was done by varying the amounts of cognitive load in a dual-task and the quality of somatosensory feedback by wearing or not wearing gloves. Participants placed their hands through a curtain inside a box so they could not see the test objects. Inside the box, they were presented with either a small or large sphere of varying weights, which they explored manually without vision. Participants provided magnitude estimates about each object’s weight in four experimental conditions (no-load with gloves, no-load without gloves, low-load without gloves, and high-load without gloves). The dual-task involved the visual presentation of a cross on a computer monitor that changed in both colour and orientation. With foot pedals, the participants responded to a target colour and / or orientation, which varied across conditions, while they hefted an object. Some conditions were designed to be more cognitively taxing than others (high-load > low-load > no-load conditions). The results revealed that the strength of the SWI diminished when participants wore the gloves but did not change as cognitive load increased on the dual-task. We conclude that the illusion is more influenced by bottom-up sensory than top-down cognitive processes.

Klíčová slova:

Biology and life sciences – Physical sciences – Neuroscience – Cognitive science – Cognitive psychology – Psychology – Social sciences – Materials science – Cognitive neuroscience – Physics – Cognition – Sensory perception – Vision – Material properties – Reaction time – Consciousness – Theories of consciousness – Touch – Density – Materials physics


Zdroje

1. Charpentier A. Analyse experimentale de quelgues elements de la sensation de poids. Archives de Physiologie Normale et Pathologique. 1891;3:122–35. doi: 10.3758/BF03213127

2. Buckingham G. Getting a grip on heaviness perception: a review of weight illusions and their probable causes. Experimental Brain Research. 2014;232(6):1623–9. doi: 10.1007/s00221-014-3926-9 24691760

3. Flournoy T. Illusions de poids. L'année psychologique. 1894;1(1):198–208.

4. Flanagan JR, Beltzner MA. Independence of perceptual and sensorimotor predictions in the size–weight illusion. Nature Neuroscience. 2000;3(7):737. doi: 10.1038/76701 10862708

5. Wolfe HK. Some effects of size on judgments of weight. Psychological Review. 1898;5(1):25. doi: 10.1037/h0073342

6. Buckingham G, Goodale MA. Size matters: a single representation underlies our perceptions of heaviness in the size-weight illusion. PLoS One. 2013;8(1):e54709. doi: 10.1371/journal.pone.0054709 23372759

7. Gregory RL. Knowledge in perception and illusion. Philosophical Transactions of the Royal Society B: Biological Sciences. 1997;352(1358):1121–7. doi: 10.1098/rstb.1997.0095 9304679

8. Piaget J. The psychology of intelligence: Routledge; 1950.

9. Saccone EJ, Chouinard PA. The influence of size in weight illusions is unique relative to other object features. Psychonomic bulletin & review. 2018:1–13. doi: 10.3758/s13423-018-1519-5 30187441

10. Buckingham G, Goodale MA. Lifting without seeing: The role of vision in perceiving and acting upon the size weight illusion. PLoS one. 2010;5(3):e9709. doi: 10.1371/journal.pone.0009709 20300575

11. Dijker AJ. Why Barbie feels heavier than Ken: The influence of size-based expectancies and social cues on the illusory perception of weight. Cognition. 2008;106(3):1109–25. doi: 10.1016/j.cognition.2007.05.009 17599820

12. Ellis RR, Lederman SJ. The golf-ball illusion: evidence for top-down processing in weight perception. Perception. 1998;27(2):193–201. doi: 10.1068/p270193 9709451

13. Peters MA, Balzer J, Shams L. Smaller = denser, and the brain knows it: natural statistics of object density shape weight expectations. PloS one. 2015;10(3):e0119794. doi: 10.1371/journal.pone.0119794 25768977

14. Flanagan JR, Bittner JP, Johansson RS. Experience can change distinct size-weight priors engaged in lifting objects and judging their weights. Current Biology. 2008;18(22):1742–7. doi: 10.1016/j.cub.2008.09.042 19026545

15. Dijker AJ. The role of expectancies in the size-weight illusion: A review of theoretical and empirical arguments and a new explanation. Psychonomic bulletin & review. 2014;21(6):1404–14. doi: 10.3758/s13423-014-0634-1 24737065

16. Saccone EJ, Chouinard PA. Barbie-Cueing Weight Perception. iPerception. 2019;10(3):2041669519850590. doi: 10.1177/2041669519850590 31205669

17. Ross J, Di Lollo V. Differences in heaviness in relation to density and weight. Perception & Psychophysics. 1970;7(3):161–2. doi: 10.3758/BF03208648

18. Stevens JC, Rubin LL. Psychophysical scales of apparent heaviness and the size-weight illusion. Perception & Psychophysics. 1970;8(4):225–30. doi: 10.3758/BF03210210

19. Wolf C, Tiest WMB, Drewing K. A mass-density model can account for the size-weight illusion. PloS one. 2018;13(2):e0190624. doi: 10.1371/journal.pone.0190624 29447183

20. Saccone EJ, Landry O, Chouinard PA. A meta-analysis of the size-weight and material-weight illusions. Psychonomic Bulletin & Review. submitted.

21. Ellis RR, Lederman SJ. The role of haptic versus visual volume cues in the size-weight illusion. Perception & Psychophysics. 1993;53(3):315–24. doi: 10.3758/BF03205186 8483695

22. Plaisier MA, Smeets JB. Object size can influence perceived weight independent of visual estimates of the volume of material. Scientific Reports. 2015;5:17719. doi: 10.1038/srep17719 26626051

23. Masin SC, Crestoni L. Experimental demonstration of the sensory basis of the size-weight illusion. Perception & Psychophysics. 1988;44(4):309–12.

24. Buckingham G, Michelakakis EE, Cole J. Perceiving and acting upon weight illusions in the absence of somatosensory information. Journal of Neurophysiology. 2016;115(4):1946–53. doi: 10.1152/jn.00587.2015 26843597

25. Cole J, Sedgwick E. The perceptions of force and of movement in a man without large myelinated sensory afferents below the neck. The Journal of physiology. 1992;449(1):503–15. doi: 10.1113/jphysiol.1992.sp019099 1522522

26. Logan GD. On the use of a concurrent memory load to measure attention and automaticity. Journal of Experimental Psychology: Human Perception and Performance. 1979;5(2):189. doi: 10.1037/0096-1523.5.2.189

27. Schneider W, Dumais ST, Shiffrin RM. Automatic/Control Processing and Attention. Illinois Univ Champaign Human Attention Research Lab, 1982.

28. Huang L, Pashler H. Attention capacity and task difficulty in visual search. Cognition. 2005;94(3):B101–B11. doi: 10.1016/j.cognition.2004.06.006 15617666

29. Lavie N. Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human perception and performance. 1995;21(3):451. doi: 10.1037/0096-1523.21.3.451 7790827

30. Kahneman D. Attention and effort. New York: Prentice Hall, NJ; 1973.

31. Buckingham G, MacDonald A. The weight of expectation: Implicit, rather than explicit, prior expectations drive the size–weight illusion. Quarterly Journal of Experimental Psychology. 2016;69(9):1831–41. doi: 10.1080/17470218.2015.1100642 26445369

32. Wickens CD, McCarley JS. Applied attention theory: CRC press; 2007.

33. Baugh LA, Yak A, Johansson RS, Flanagan JR. Representing multiple object weights: competing priors and sensorimotor memories. J Neurophysiol. 2016;116(4):1615–25. Epub 2016/07/08. doi: 10.1152/jn.00282.2016 27385795; PubMed Central PMCID: PMC5144702.

34. Trewartha KM, Flanagan JR. Linking actions and objects: Context-specific learning of novel weight priors. Cognition. 2017;163:121–7. doi: 10.1016/j.cognition.2017.02.014 28319685

35. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4 5146491

36. Peters HB. Vision screening with a Snellen chart. Optometry and Vision Science. 1961;38(9):487–505. doi: 10.1097/00006324-196109000-00001

37. Ishihara S. Tests for colour-blindness: Kanehara Shuppan Company; 1960.

38. Psychology Software Tools. E-Prime 2.0 Overview 2017. Available from: https://pstnet.com/products/e-prime-legacy-versions/.

39. Psychology Software Tools. Chronos: A Multifunctional Response and Stimulus Device 2017. Available from: https://pstnet.com/products/chronos/.

40. Zwislocki J, Goodman D. Absolute scaling of sensory magnitudes: A validation. Perception & psychophysics. 1980;28(1):28–38.

41. Schwartz S, Vuilleumier P, Hutton C, Maravita A, Dolan RJ, Driver J. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral Cortex. 2004;15(6):770–86. doi: 10.1093/cercor/bhh178 15459076

42. Travis SL, Dux PE, Mattingley JB. Re-examining the influence of attention and consciousness on visual afterimage duration. Journal of Experimental Psychology: Human Perception and Performance. 2017;43(12):1944. doi: 10.1037/xhp0000458 29199846

43. IBM Corporation. Statistical Package for the Social Sciences version 23. Armonk, New York, USA2015.

44. Wickelgren WA. Speed-accuracy tradeoff and information processing dynamics. Acta psychologica. 1977;41(1):67–85. doi: 10.1016/0001-6918(77)90012-9.

45. Jarosz AF, Wiley J. What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving. 2014;7(1):2. doi: 10.7771/1932-6246.1167

46. Wagenmakers E. A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review. 2007;14(5):779–804. doi: 10.3758/bf03194105

47. Jeffreys H. Theory of probability. Oxford University Press, London; 1961.

48. Bell-Krotoski J, Weinstein S, Weinstein C. Testing sensibility, including touch-pressure, two-point discrimination, point localization, and vibration. J Hand Ther. 1993;6(2):114–23. Epub 1993/04/01. 8393725.

49. McGlone F, Reilly D. The cutaneous sensory system. Neuroscience & Biobehavioral Reviews. 2010;34(2):148–59. doi: 10.1016/j.neubiorev.2009.08.004 19712693

50. Rowe MJ. The Synaptic Linkage for Tactile and Kinaesthetic Inputs to the Dorsal Column Nuclei. In: Gandevia SC, Proske U, Stuart DG, editors. Sensorimotor Control of Movement and Posture. Boston, MA: Springer US; 2002. p. 47–55.

51. Amazeen EL. Perceptual independence of size and weight by dynamic touch. Journal of Experimental Psychology: Human Perception and Performance. 1999;25(1):102–19. doi: 10.1037//0096-1523.25.1.102 10069028

52. Kloos H, Amazeen EL. Perceiving heaviness by dynamic touch: An investigation of the size-weight illusion in preschoolers. British Journal of Developmental Psychology. 2002;20(2):171–83. doi: 10.1348/026151002166398

53. Oberle CD, Amazeen EL. Independence and separability of volume and mass in the size-weight illusion. Perception & Psychophysics. 2003;65(6):831–43. doi: 10.3758/bf03194818 14528894

54. Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Dale AM, et al. Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(2):449–54. doi: 10.1073/pnas.0507062103 16407167

55. Noguchi Y, Yokoyama T, Suzuki M, Kita S, Kakigi R. Temporal dynamics of neural activity at the moment of emergence of conscious percept. J Cogn Neurosci. 2012;24(10):1983–97. Epub 2012/06/23. doi: 10.1162/jocn_a_00262 22721378.

56. Huang I. The size-weight illusion and the “weight-density illusion”. The Journal of General Psychology. 1945;33(1):65–84.

57. Chouinard PA, Large ME, Chang EC, Goodale MA. Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: An fMRI investigation of the size–weight illusion. Neuroimage. 2009;44(1):200–12. doi: 10.1016/j.neuroimage.2008.08.023 18801445

58. Peters MA, Ma WJ, Shams L. The Size-Weight Illusion is not anti-Bayesian after all: a unifying Bayesian account. PeerJ. 2016;4:e2124. doi: 10.7717/peerj.2124 27350899

59. Harshfield SP, DeHardt DC. Weight judgment as a function of apparent density of objects. Psychonomic science. 1970;20(6):365–6. doi: 10.3758/bf03335692

60. Thouless RH. Phenomenal regression to the real object. I. British Journal of Psychology General Section. 1931;21(4):339–59. doi: 10.1111/j.2044-8295.1931.tb00597.x

61. Plaisier MA, Kuling IA, Brenner E, Smeets JB. When does one decide how heavy an object feels while picking it up? Psychological science. 2019;30(6):822–9. doi: 10.1177/0956797619837981 30917092


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#