#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dynamic up- and down-regulation of the default (DMN) and extrinsic (EMN) mode networks during alternating task-on and task-off periods


Autoři: Kenneth Hugdahl aff001;  Katarzyna Kazimierczak aff001;  Justyna Beresniewicz aff001;  Kristiina Kompus aff001;  Rene Westerhausen aff004;  Lars Ersland aff005;  Renate Grüner aff003;  Karsten Specht aff001
Působiště autorů: Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway aff001;  Division of Psychiatry, Haukeland University Hospital, Bergen, Norway aff002;  Department of Radiology, Haukeland University Hospital, Bergen, Norway aff003;  Institute of Psychology, University of Oslo, Oslo, Norway aff004;  Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway aff005;  Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway aff006;  Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway aff007
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0218358

Souhrn

Using fMRI, Hugdahl et al. (2015) reported the existence of a general-domain cortical network during active task-processing which was non-specific to the cognitive task being processed. They labelled this network the extrinsic mode network (EMN). The EMN would be predicted to be negatively, or anti-correlated with the classic default mode network (DMN), typically observed during periods of rest, such that while the EMN should be down-regulated and the DMN up-regulated in the absence of demands for task-processing, the reverse should occur when demands change from resting to task-processing. This would require alternating periods of task-processing and resting and analyzing data continuously when demands change from active to passive periods and vice versa. We were particularly interested in how the networks interact in the critical transition points between conditions. For this purpose, we used an auditory task with multiple cognitive demands in a standard fMRI block-design. Task-present (ON) blocks were alternated with an equal number of task-absent, or rest (OFF) blocks to capture network dynamics across time and changing environmental demands. To achieve this, we specified the onset of each block, and used a finite-impulse response function (FIR) as basis function for estimation of the fMRI-BOLD response. During active (ON) blocks, the results showed an initial rapid onset of activity in the EMN network, which remained throughout the period, and faded away during the first scan of the OFF-block. During OFF blocks, activity in the DMN network showed an initial time-lag where neither the EMN nor the DMN was active, after which the DMN was up-regulated. Studying network dynamics in alternating passive and active periods may provide new insights into brain network interaction and regulation.

Klíčová slova:

Biology and life sciences – Research and analysis methods – Neuroscience – Cognitive science – Cognitive psychology – Psychology – Social sciences – Computer and information sciences – Network analysis – Anatomy – Medicine and health sciences – Diagnostic medicine – Research design – Head – Imaging techniques – Brain – Cognition – Brain mapping – Functional magnetic resonance imaging – Neuroimaging – Diagnostic radiology – Magnetic resonance imaging – Radiology and imaging – Neural networks – Attention – Ears – Experimental design – Cingulate cortex


Zdroje

1. Hugdahl K., Raichle M. E., Mitra A., Specht K. (2015). On the existence of a generalized non-specific task-dependent network. Frontiers in Human Neuroscience, http://dx.doi.org/10.3389/fnhum.2015.00430.

2. Fedorenko E., Duncan J., Kanwisher N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. PNAS, 110, 16616–16621 doi: 10.1073/pnas.1315235110 24062451

3. Duncan J (2010) The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences 14, 172–179. doi: 10.1016/j.tics.2010.01.004 20171926

4. Duncan J.D., & Owen A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483. 11006464

5. Corbetta M., & Schulman G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215. doi: 10.1038/nrn755 11994752

6. Dosenbach N.U.F., Fair D.D, Miezin F.M., Cohen A.L., Wenger K.K., Dosenbach R.A.T., Fox M.D., Snyder A.Z., Vincent. J.L., Raichle M.E., Schlaggar B.L., Petersen S.E. (2007). Distinct brain networks for adaptive and stable task control in humans, PNAS, 104, 11073–11078 doi: 10.1073/pnas.0704320104 17576922

7. Gratton C., Laumann T.O., Nielsen A.N., Greene D.J., Gordon E.M., Gilmore A.W., Nelson S.M., Coalson R.S., Snyder A.Z., Schlaggar B.L., et al. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452 e435. doi: 10.1016/j.neuron.2018.03.035 29673485

8. Gonzalez-Castillo J., Saad Z.S., Handwerker D.A., Inati S.J., Brenowitz N., and Bandettini P.A. (2012). Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. PNAS, 109, 5487–5492. doi: 10.1073/pnas.1121049109 22431587

9. Corbetta M., Patel G., Schulman G.L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58, 306–324. doi: 10.1016/j.neuron.2008.04.017 18466742

10. Greicus M.D., Krasnow B., Reiss A.L., Menon V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. PNAS, 100, 253–258. doi: 10.1073/pnas.0135058100 12506194

11. Downar J., Crawley A.P., Mikulis D.J., eDavis K.D. (2002). A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. Journal of Neurophysiology, 87, 615–20. doi: 10.1152/jn.00636.2001 11784775

12. Raichle M. (2010). Two views on brain function. Trends in Cognitive Sciences, 14, 180–190. doi: 10.1016/j.tics.2010.01.008 20206576

13. Bressler S.L, & Menon V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290. doi: 10.1016/j.tics.2010.04.004 20493761

14. Power J. D, & Petersen, S.E. (2013). Control-related systems in the human brain. Current Opinion in Neurobiology, 2, 223–228.

15. Lee M.H., Hacker C.D., Snyder A.Z., Corbetta M., Zhang D., Leuthardt E.C., Shimony J.S. (2012). Clustering of resting state networks, PlosOne, 7, doi: 10.1371/journal.pone.0040370 22792291

16. Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS, 102, 9673–9678. doi: 10.1073/pnas.0504136102 15976020

17. Lee M.H. Lee, Smyser C.D., Shimony J.S. (2013). Resting-State fMRI: A Review of Methods and Clinical Applications. American Journal of Neuroradiology, 34, 1866–1872 doi: 10.3174/ajnr.A3263 22936095

18. Cabeza R., and Nyberg L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.

19. Fransson P (2006) How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44:2836–2845. doi: 10.1016/j.neuropsychologia.2006.06.017 16879844

20. Spreng RN (2012) The fallacy of a "task-negative" network. Frontiers in Psychology, 3:145. doi: 10.3389/fpsyg.2012.00145 22593750

21. Krieger-Redwood K, Jefferies E, Karapanagiotidis T, Seymour R, Nunes A, Ang JW, Majernikova V, Mollo G, Smallwood J (2016) Down but not out in posterior cingulate cortex: Deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. Neuroimage 141:366–377 doi: 10.1016/j.neuroimage.2016.07.060 27485753

22. Shulman G.L., Fiez J.A., Corbetta M., Buckner R.L., Miezin F.M., Raichle M.E., et al.(1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648–663. doi: 10.1162/jocn.1997.9.5.648 23965122

23. Raichle M.E., Macleod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. (2001). A default mode of brain function. PNAS, 98, 676–682. doi: 10.1073/pnas.98.2.676 11209064

24. Buckner, Randy L, Andrews‐ Hanna, Jessica R, & Schacter, Daniel L. (2008). The brain's default network. Annals of the New York Academy of Sciences, 1124, 1–38. doi: 10.1196/annals.1440.011 18400922

25. Buckner R.L. (2012). The serendipitous discovery of the brain's default network. Neuroimage, 62, 1137–1145. doi: 10.1016/j.neuroimage.2011.10.035 22037421

26. Mitra A., Raichle M.E. (2018). Principles of cross-network communication in human resting state fMRI. Scandinavian Journal of Psychology, 59, 83–90. doi: 10.1111/sjop.12422 29356003

27. Mak L. E., Minuzzi L., MacQueen G., Hall G., Kennedy S.H., Milev R. (2017). The default mode network in healthy individuals: A systematic review and meta-analysis. Brain Connect, 7, https://doi.org/10.1089/brain.2016.0438

28. Gao W., & Lin W. (2012). Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Human Brain Mapping, 33, 192–202. doi: 10.1002/hbm.21204 21391263

29. Mitra A. & Raichle ME., (2016). How networks communicate: Propagation patterns in spontaneous brain activity. Philosophical Transactions of the Royal Society, London B, 371, doi: 10.1098/rstb.2015.0546 27574315

30. Lustig C., Snyder A.Z., Bhakta M., O’Brien K.C., McAvoy M., Raichle M.E. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type, PNAS, 100, 14504–14509. doi: 10.1073/pnas.2235925100 14608034

31. Ramot M., Fisch L., Harel M., Kipervasser S., Andelman F., Neufeld M.Y., Kramer U., Fried I., and Malach R. (2012). A widely distributed spectral signature of task-negative electrocorticography responses revealed during a visuomotor task in the human cortex. Journal of Neuroscience, 32, 10458–10469. doi: 10.1523/JNEUROSCI.0877-12.2012 22855795

32. Sridharan D., Levitin D.J., and Menon V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. PNAS, 105, 12569–12574. doi: 10.1073/pnas.0800005105 18723676

33. Posner M. I., & Raichle M. E. (1997). Images of mind. New York: Freeman & co.

34. Mittner M., Boekel W., Tucker A.M., Turner B.M., Heathcote A., Forstmann B.U. (2014). When the brain takes a break: A model-based analysis of mind wandering, The Journal of Neuroscience, 34, 16286–16295. doi: 10.1523/JNEUROSCI.2062-14.2014 25471568

35. Kompus K, Specht K, Ersland L, Juvodden HT, van Wageningen H, Hugdahl K, Westerhausen R. (2012). A forced-attention dichotic listening fMRI study on 113 subjects. Brain and Language, 121, 240–247. doi: 10.1016/j.bandl.2012.03.004 22494771

36. Hugdahl K., & Andersson L. (l986). The "forced-attention paradigm" in dichotic listening to CV-syllables: A comparison between adults and children. Cortex, 22, 4l7–432.

37. Asbjørnsen A., & Hugdahl K. (1995). Attentional effects in dichotic listening. Brain and Language, 49, 189–201. doi: 10.1006/brln.1995.1029 7640962

38. Hugdahl K., Westerhausen R., Alho K., Medvedev S., Laine M, & Hämäläinen. H. (2009). Attention and cognitive control: Unfolding the dichotic listening story. Scandinavian Journal of Psychology, 50, 11–22. doi: 10.1111/j.1467-9450.2008.00676.x 18705670

39. Obrzut J.E., Mondor T.A., Uecker A. (1993).The influence of attention on the dichotic REA with normal and learning disabled children. Neuropsychologia, 31, 1411–1416. doi: 10.1016/0028-3932(93)90107-b 8127436

40. Gadea M., Gomez C., Espert R. (2000). Test-retest performance for the consonant-vowel dichotic listening test with and without attentional manipulations. Journal of Clinical and Experimental Neuropsychology, 22, 793–803. doi: 10.1076/jcen.22.6.793.959 11320437

41. Helland T., & Asbjørnsen A. (2000). Executive functions in dyslexia. Child Neuropsychology, 6, 37–46. doi: 10.1076/0929-7049(200003)6:1;1-B;FT037 10980667

42. Tallus J., Soveri A., Hämäläinen H., Tuomainen J., Laine M. (2015). Effects of auditory attention training with the dichotic listening task: Behavioural and neurophysiological evidence, PlosOne, 6, 10, e0139318. doi: 10.1371/journal.pone.0139318 eCollection. 26439112

43. Kershner J.R. (2016). Forced-attention dichotic listening with university students with dyslexia: Search for a core deficit. Journal of Learning Disabilities 2016, Vol. 49(3) 282–292

44. O'Leary D., Andreasen N. C., Hurtig R. R., Hichwa R. D., Watkins L., Boles Ponto L. L., Rogers M., & Kirchner P. T. (1997). A positron emission tomography study of binaurally and dichotically presented stimuli: Effects of level of language and directed attention. Brain and Language, 53, 20–39.

45. Hugdahl K., Law I., Kyllingsbæk S., Brønnick K., Gade A., & Paulson O. B. (2000). Effects of attention on dichotic listening: An 15O-PET study. Human Brain Mapping, 10, 87–97. 10864233

46. Westerhausen R., Moosmann M., Alho K., Belsby S.O., Hämäläinen H., Medvedev S., Specht K., & Hugdahl K. (2010). Identification of attention and cognitive control networks in a parametric auditory fMRI study. Neuropsychologia, 48, 2075–2081 doi: 10.1016/j.neuropsychologia.2010.03.028 20363236

47. Shankweiler D., & Studdert-Kennedy M. (1967). Identification of consonants and vowels presented to left and right ears. Quarterly Journal of Experimental Psychology, 19, 59–63. doi: 10.1080/14640746708400069 6041684

48. Hugdahl K. (2011). Fifty years of dichotic listening research—Still going and going and going…. Brain and Cognition, 76, 211–214. doi: 10.1016/j.bandc.2011.03.006 21470754

49. Van den Noort M., Specht K., Rimol LM, Ersland L., & Hugdahl K. (2008) A new verbal reports fMRI dichotic listening paradigm for studies of hemispheric asymmetry. Neuroimage, 40, 902–911. doi: 10.1016/j.neuroimage.2007.11.051 18234509

50. Bryden M.P., Munhall K., & Allard F. (1983). Attentional biases and the right-ear effect in dichotic listening. Brain and Language, 18, 236–248. 6839141

51. Hommet C, Mondon K., Berrut G, Goyer Y., Isingrini M., Constans T, Beizung C. (2011). Central auditory processing in aging: the dichotic listening paradigm. Journal of Nutrition in Health and Aging, 14, 751–756.

52. Gadea M., Alino M., Garijo E., Espert R, Salvador A, (2016). Testing the benefits of neurofeedback on selective attention measured through dichotic lustening, Applied Psychophysiology and Biofeedback, 41, 157–164. doi: 10.1007/s10484-015-9323-8 26683198

53. Logothetis N.L., Pauls J., Augath M., Trinath T., Oeltermann A. (2001). A default mode of brain function. Nature, 412, 150–157 doi: 10.1038/35084005 11449264

54. Popa D., Popescu A.T., Pare D. (2009). Contrasting activity profile of two distributed cortical networks as a function of attentional demands. Journal of Neuroscience 29, 1191–1201. doi: 10.1523/JNEUROSCI.4867-08.2009 19176827

55. Sormaz M., Murphy C., Wang H-t., Hymers M., Karapanagiotidis T., Poerio G., Margulies D.S., Jefferies E., Smallwood J. (2018). Default mode network can support the level of detail in experience during active task states, PNAS, 115, 9318–9323. doi: 10.1073/pnas.1721259115 30150393

56. Fedorenko E., Behr M. K., Kanwisher N. (2011). Functional specificity for high-level linguistic processing in the human brain. PNAS, 108, 16428–16433. doi: 10.1073/pnas.1112937108 21885736

57. Bush G., Shin L.M. (2006). The multi-source interference task: An fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. nature Protocols, 1, 308–313. doi: 10.1038/nprot.2006.48 17406250

58. Posner M.I. & Rothbart M.K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review Psychology, 58, 1–23

59. Sauseng P., Klimesch W., Stadler W., Schabus M., Doppelmayr M., Hanslmayr S., Gruber W.R., Birbaumer N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22, 2917–2926. doi: 10.1111/j.1460-9568.2005.04482.x 16324126

60. Sauseng P., Klimesch W.e, Freunberger R, Pecherstorfer T.e, Hanslmayr S., Doppelmayre M. (2006). Relevance of EEG alpha and theta oscillations during task switching. Experimental Brain Research, 170, 295–301. doi: 10.1007/s00221-005-0211-y 16317574

61. Bandettini P. A. (1999). The temporal resolution of Functional MRI. In C. T. W. Moonen & P. A. Bandettini (Eds.), Functional MRI. Berlin: Springer Verlag.

62. Callard F., Smallwood J., and Margulies D.S. (2012). Default positions: How neuroscience's historical legacy has hampered investigation of the resting Mind. Frontiers in Psychology 3, 321. doi: 10.3389/fpsyg.2012.00321 22973252

63. Margulies D.S. Ghosh S.S., Goulas A., Falkiewicz F., Huntenburg J.M., Langs G., Bezgin G., Eickhoff S.B., Castellanos F.X., Petrides M., Jefferies E., Smallwood J.(2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. PNAS, 113, 12574–12579 doi: 10.1073/pnas.1608282113 27791099

64. Margulies D.S., and Smallwood J. (2017). Converging evidence for the role of transmodal cortex in cognition. PNAS, 114, 12641–12643. doi: 10.1073/pnas.1717374114 29142008

65. Vatansever D, Menon DK, Stamatakis EA (2017a) Default mode contributions to automated information processing. PNAS, 114,12821–12826 doi: 10.1073/pnas.1710521114 29078345

66. Provost JS, Monchi O (2015). Exploration of the dynamics between brain regions associated with the default-mode network and frontostriatal pathway with regards to task familiarity. The European Journal of Neuroscience, 41, 835–844. doi: 10.1111/ejn.12821 25620606

67. Sorg C., Riedl V., Mühlau M., Calhoun V.D., Eichele T., Drzezga A., Förstl H., Kurz A., Zimmer C., Wohlschläger A.M. (2007). Selective changes of resting-state networks in indivisduals at risk for Alzheimer's disease. PNAS, 104, 18760–18765. doi: 10.1073/pnas.0708803104 18003904

68. Northoff G., & Qin P. (2011). How can the brain's resting state activity generate hallucinations? A 'resting state hypothesis' of auditory verbal hallucinations. Schizophrenia Research, 127, 202–214. doi: 10.1016/j.schres.2010.11.009 21146961

69. Nygård M., Eichele T, Løberg E-M., Jørgensen H, Johnsen E, Kroken R, Berle Ø, Hugdahl K. (2012). Patients with schizophrenia fail to up-regulate task-positive and down-regulate task-negative brain networks: An fMRI study using an ICA analysis approach. Frontiers in Human Neuroscience, doi: 103389.fnhum.2012.00149

70. Allen P., Sommer I.E., Jardri R., Eysenck M.W., Hugdahl K. (2019). Extrinsic and default mode networks in psychiatric conditions: Relationship to excitatory-inhibitory transmitter balance and early trauma. Neuroscience and Biobehavioral Reviews, 99, 90–100. doi: 10.1016/j.neubiorev.2019.02.004 30769024

71. Van Dijk K. R., Hedden T., Venkataraman A., Evans K. C., Lazar S. W., & Buckner R. L. (2009). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103, 297–321. doi: 10.1152/jn.00783.2009 19889849

72. Cole D. M., Smith S. M., & Beckmann C. F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Frontiers in Systems Neuroscience, 4,8.

73. Di X & Biswal B.B. (2014). Modulatory interactions between the default mode network and task positive networks in resting state. PeerJ, doi: 10.7717/peerj.367 24860698


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#