Implicit learning of artificial grammatical structures after inferior frontal cortex lesions
Autoři:
Tatiana Jarret aff001; Anika Stockert aff003; Sonja A. Kotz aff004; Barbara Tillmann aff001
Působiště autorů:
CNRS, UMR5292, INSERM, U1028, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Lyon, France
aff001; University Lyon 1, Villeurbanne, France
aff002; Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
aff003; Dept. of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
aff004; Faculty of Psychology and Neuroscience, Dept. of Neuropsychology, Maastricht University, Maastricht, The Netherlands
aff005; Faculty of Psychology and Neuroscience, Dept. of Psychopharmacology, Maastricht University, Maastricht, The Netherlands
aff006
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222385
Souhrn
Objective
Previous research associated the left inferior frontal cortex with implicit structure learning. The present study tested patients with lesions encompassing the left inferior frontal gyrus (LIFG; including Brodmann areas 44 and 45) to further investigate this cognitive function, notably by using non-verbal material, implicit investigation methods, and by enhancing potential remaining function via dynamic attending. Patients and healthy matched controls were exposed to an artificial pitch grammar in an implicit learning paradigm to circumvent the potential influence of impaired language processing.
Methods
Patients and healthy controls listened to pitch sequences generated within a finite-state grammar (exposure phase) and then performed a categorization task on new pitch sequences (test phase). Participants were not informed about the underlying grammar in either the exposure phase or the test phase. Furthermore, the pitch structures were presented in a highly regular temporal context as the beneficial impact of temporal regularity (e.g. meter) in learning and perception has been previously reported. Based on the Dynamic Attending Theory (DAT), we hypothesized that a temporally regular context helps developing temporal expectations that, in turn, facilitate event perception, and thus benefit artificial grammar learning.
Results
Electroencephalography results suggest preserved artificial grammar learning of pitch structures in patients and healthy controls. For both groups, analyses of event-related potentials revealed a larger early negativity (100–200 msec post-stimulus onset) in response to ungrammatical than grammatical pitch sequence events.
Conclusions
These findings suggest that (i) the LIFG does not play an exclusive role in the implicit learning of artificial pitch grammars, and (ii) the use of non-verbal material and an implicit task reveals cognitive capacities that remain intact despite lesions to the LIFG. These results provide grounds for training and rehabilitation, that is, learning of non-verbal grammars that may impact the relearning of verbal grammars.
Klíčová slova:
Biology and life sciences – Research and analysis methods – Neuroscience – Cognitive science – Cognitive psychology – Learning – Learning and memory – Psychology – Social sciences – Medicine and health sciences – Pathology and laboratory medicine – Physiology – Diagnostic medicine – Signs and symptoms – Clinical medicine – Neurology – Cognitive neurology – Cognitive impairment – Cognitive neuroscience – Imaging techniques – Brain mapping – Neuroimaging – Electrophysiology – Neurophysiology – Bioassays and physiological analysis – Electrophysiological techniques – Brain electrophysiology – Electroencephalography – Clinical neurophysiology – Lesions – Language – Linguistics – Grammar – Syntax – Language acquisition
Zdroje
1. Embick D, Marantz A, Miyashita Y, O’Neil W, Sakai KL (2000) A syntactic specialization for Broca’s area. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.100098897 10811887
2. Fiebach CJ, Schlesewsky M, Lohmann G, von Cramon DY, Friederici AD (2005) Revisiting the role of Broca’s area in sentence processing: syntactic integration versus syntactic working memory. Hum Brain Mapp 24: 79–91. Available: http://www.ncbi.nlm.nih.gov/pubmed/15455462. Accessed 19 September 2013. doi: 10.1002/hbm.20070
3. Maess B, Koelsch S, Gunter TC, Friederici AD (2001) Musical syntax is processed in Broca’s area: an MEG study. Nat Neurosci 4: 540–545. doi: 10.1038/87502 11319564
4. Petersson KM, Forkstam C, Ingvar M (2004) Artificial syntactic violations activate Broca’s region. Cogn Sci 28: 383–407. Available: http://doi.wiley.com/10.1016/j.cogsci.2003.12.003. Accessed 18 July 2011.
5. Uddén J, Folia V, Forkstam C, Ingvar M, Fernandez G, Overeem S, et al. (2008) The inferior frontal cortex in artificial syntax processing: an rTMS study. Brain Res 1224: 69–78. Available: http://www.ncbi.nlm.nih.gov/pubmed/18617159. Accessed 13 November 2012. doi: 10.1016/j.brainres.2008.05.070
6. Friederici AD, Kotz SA (2003) The brain basis of syntactic processes: functional imaging and lesion studies. Neuroimage 20: S8–S17. Available: http://linkinghub.elsevier.com/retrieve/pii/S1053811903005226. Accessed 12 October 2012. 14597292
7. Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6: 78–84. Available: http://www.ncbi.nlm.nih.gov/pubmed/15866191.
8. Jakuszeit M, Kotz SA, Hasting AS (2013) Generating predictions: lesion evidence on the role of left inferior frontal cortex in rapid syntactic analysis. Cortex 49: 2861–2874. Available: http://www.ncbi.nlm.nih.gov/pubmed/23890826. Accessed 28 April 2014. doi: 10.1016/j.cortex.2013.05.014
9. Novick JM, Trueswell JC, Thompson-Schill SL (2005) Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension. Cogn Affect Behav Neurosci 5: 263–281. Available: http://www.springerlink.com/index/10.3758/CABN.5.3.263. 16396089
10. Opitz B, Friederici AD (2007) Neural Basis of Processing Sequential and Hierarchical Syntactic Structures. Hum Brain Mapp 28: 585–592. doi: 10.1002/hbm.20287 17455365
11. Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91: 1357–1392. Available: http://www.ncbi.nlm.nih.gov/pubmed/22013214. Accessed 19 March 2014. doi: 10.1152/physrev.00006.2011
12. Conway CM, Pisoni DB, Kronenberger WG (2009) The Importance of Sound for Cognitive Sequencing Abilities: The Auditory Scaffolding Hypothesis. Curr Dir Psychol Sci a J Am Psychol Soc 18: 275–279. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2923391&tool=pmcentrez&rendertype=abstract.
13. Musso M, Moro A, Glauche V, Rijntjes M, Reichenbach J, Büchel C, et al. (2003) Broca’s area and the language instinct. Nat Neurosci 6: 774–781. Available: http://www.ncbi.nlm.nih.gov/pubmed/12819784. doi: 10.1038/nn1077
14. Tettamanti M, Alkadhi H, Moro A, Perani D, Kollias S, Weniger D (2002) Neural correlates for the acquisition of natural language syntax. Neuroimage 17: 700–709. doi: 10.1016/S1053-8119(02)91201-2 12377145
15. Saffran JR (2003) Musical Learning and Language Development. Ann N Y Acad Sci 999: 1–5. Available: http://doi.wiley.com/10.1196/annals.1284.001.
16. Reber AS (1989) Implicit learning and tacit knowledge. J Exp Psychol Gen 118: 219–235. Available: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-3445.118.3.219.
17. Reber AS (1967) Implicit Learning of Artificial Grammars. J Verbal Learning Verbal Behav 6: 855–863.
18. Bigand E, Perruchet P, Boyer M (1998) Implicit learning of an artificial grammar of musical timbres. Cah Psychol Cogn 17: 577–600.
19. Altmann GTM, Dienez Z, Goode A (1995) Modality Independence of Implicitly Learned Grammatical Knowledge. J Exp Psychol Learn Mem Cogn 21: 899–912.
20. Tillmann B, Poulin-Charronnat B (2010) Auditory expectations for newly acquired structures. Q J Exp Psychol 63: 1646–1664. Available: http://www.ncbi.nlm.nih.gov/pubmed/20175025. Accessed 20 December 2010.
21. Reed J, Johnson P (1994) Assessing implicit learning with indirect tests: Determining what is learned about sequence structure. J Exp Psychol Learn Mem Cogn 20: 585–594.
22. Rohrmeier M, Rebuschat P, Cross I (2011) Incidental and online learning of melodic structure. Conscious Cogn 20: 214–222. Available: http://www.ncbi.nlm.nih.gov/pubmed/20832338. Accessed 21 September 2011. doi: 10.1016/j.concog.2010.07.004
23. Udden J, Männel C (2018) Artificial grammar learning and its neurobiology in relation to language processing and development. In: Oxford: Oxford University Press., editor. Oxford handbook of psycholinguistics. pp. 755–783.
24. Schankin A, Hagemann D, Danner D, Hager M (2011) Violations of implicit rules elicit an early negativity in the event-related potential. Neuroreport 22: 642–645. Available: http://www.ncbi.nlm.nih.gov/pubmed/21817929. Accessed 20 June 2013. doi: 10.1097/WNR.0b013e328349d146
25. Carrión RE, Bly BM (2007) Event-related potential markers of expectation violation in an artificial grammar learning task. Neuroreport 18: 191–195. doi: 10.1097/WNR.0b013e328011b8ae 17301688
26. Selchenkova T, François C, Schön D, Corneyllie A, Perrin F, Tillmann B (2014) Metrical presentation boosts implicit learning of artificial grammar. PLoS One 9: e112233. Available: http://www.ncbi.nlm.nih.gov/pubmed/25372147. Accessed 11 November 2014. doi: 10.1371/journal.pone.0112233
27. Ferdinand NK, Mecklinger A, Kray J (2008) Error and deviance processing in implicit and explicit sequence learning. J Cogn Neurosci 20: 629–642. Available: http://www.ncbi.nlm.nih.gov/pubmed/18052785. doi: 10.1162/jocn.2008.20046
28. Fu Q, Bin G, Dienes Z, Fu X, Gao X (2013) Learning without consciously knowing: evidence from event-related potentials in sequence learning. Conscious Cogn 22: 22–34. Available: http://www.ncbi.nlm.nih.gov/pubmed/23247079. Accessed 24 May 2013. doi: 10.1016/j.concog.2012.10.008
29. Friederici AD, Bahlmann J, Heim S, Schubotz RI, Anwander A (2006) The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proc Natl Acad Sci U S A 103: 2458–2463. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1413709&tool=pmcentrez&rendertype=abstract 16461904
30. Petersson KM, Folia V, Hagoort P (2012) What artificial grammar learning reveals about the neurobiology of syntax. Brain Lang 120: 83–95. Available: http://www.ncbi.nlm.nih.gov/pubmed/20943261. Accessed 11 June 2011. doi: 10.1016/j.bandl.2010.08.003
31. Antonenko D, Meinzer M, Lindenberg R, Witte AV, Flöel A (2012) Grammar learning in older adults is linked to white matter microstructure and functional connectivity. Neuroimage 62: 1667–1674. Available: http://www.ncbi.nlm.nih.gov/pubmed/22659480. Accessed 21 November 2012. doi: 10.1016/j.neuroimage.2012.05.074
32. Forkstam C, Hagoort P, Fernandez G, Ingvar M, Petersson KM (2006) Neural correlates of artificial syntactic structure classification. Neuroimage 32: 956–967. Available: http://www.ncbi.nlm.nih.gov/pubmed/16757182. Accessed 4 August 2011. doi: 10.1016/j.neuroimage.2006.03.057
33. Goschke T, Friederichi A, Kotz S, van Kampen A (2001) Procedural learning in Broca’s Aphasia: Dissociation between the implicit acquisition of spatio-motor and phoneme sequences. J Cogn Neurosci 13: 370–388. 11371314
34. Christiansen MH, Louise Kelly M, Shillcock RC, Greenfield K (2010) Impaired artificial grammar learning in agrammatism. Cognition 116: 382–393. Available: http://www.ncbi.nlm.nih.gov/pubmed/20605017. Accessed 12 August 2010. doi: 10.1016/j.cognition.2010.05.015
35. Schuchard J, Thompson CK (2013) Implicit and explicit learning in individuals with Agrammatic Aphasia. J Psycholinguist Res 27 march: 1–16. Available: http://www.ncbi.nlm.nih.gov/pubmed/23532578. Accessed 30 September 2013.
36. Brunner RJ, Kornhuber HH, Seemüller E, Suger G, Wallesch CW (1982) Basal ganglia participation in language pathology. Brain Lang 16: 281–299. Available: http://www.ncbi.nlm.nih.gov/pubmed/7116129.
37. Parkinson BR, Raymer A, Chang Y-L, Fitzgerald DB, Crosson B (2009) Lesion characteristics related to treatment improvement in object and action naming for patients with chronic aphasia. Brain Lang 110: 61–70. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3239413&tool=pmcentrez&rendertype=abstract. Accessed 12 November 2012. doi: 10.1016/j.bandl.2009.05.005 19625076
38. Kotz SA, Schwartze M, Schmidt-Kassow M (2009) Non-motor basal ganglia functions: a review and proposal for a model of sensory predictability in auditory language perception. Cortex 45: 982–990. Available: http://www.ncbi.nlm.nih.gov/pubmed/19361785. Accessed 18 July 2011. doi: 10.1016/j.cortex.2009.02.010
39. Selchenkova T, Jones MR, Tillmann B (2014) The influence of temporal regularities on the implicit learning of pitch structures. Q J Exp Psychol. doi: 10.1080/17470218.2014.929155 To. 25318962
40. Ullman MT, Pancheva R, Love T, Yee E, Swinney D, Hickok G (2005) Neural correlates of lexicon and grammar: evidence from the production, reading, and judgment of inflection in aphasia. Brain Lang 93: 185–238; discussion 239–42. Available: http://www.ncbi.nlm.nih.gov/pubmed/15781306. Accessed 29 July 2011. doi: 10.1016/j.bandl.2004.10.001
41. Juffs A (2004) Representation, processing and working memory in second language. Trans Philol Soc 102: 199–225.
42. McDonald JL (2006) Beyond the critical period: Processing-based explanations for poor grammaticality judgment performance by late second language learners. J Mem Lang 55: 381–401. Available: http://linkinghub.elsevier.com/retrieve/pii/S0749596X06000817. Accessed 10 November 2013.
43. Kotz SA (2009) A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain Lang 109: 68–74. Available: http://dx.doi.org/10.1016/j.bandl.2008.06.002 18657314
44. Jones MR, Moynihan H, MacKenzie N, Puente J (2002) Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol Sci 13: 313–319. Available: http://www.ncbi.nlm.nih.gov/pubmed/12137133. doi: 10.1111/1467-9280.00458
45. Kotz SA, Schwartze M (2010) Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci 14: 392–399. Available: http://www.ncbi.nlm.nih.gov/pubmed/20655802. Accessed 19 September 2013. doi: 10.1016/j.tics.2010.06.005
46. Jones MR, Boltz M (1989) Dynamic attending and responses to time. Psychol Rev 96: 459–491. Available: http://www.ncbi.nlm.nih.gov/pubmed/2756068.
47. Jones MR (1976) Time, Our Lost Dimension: Toward a New Theory of Perception, Attention, and Memory. Psychol Rev 83: 323–355. 794904
48. Jones MR (2009) Musical time. Oxford Handbook of Music Psychology, Ed. Hallam Susan, Cross Ian, Thaut Michael. pp. 81–92.
49. Francois C, Schön D (2010) Learning of musical and linguistic structures: comparing event-related potentials and behavior. Neuroreport 21: 928–932. Available: http://www.ncbi.nlm.nih.gov/pubmed/20697301. Accessed 26 November 2013. doi: 10.1097/WNR.0b013e32833ddd5e
50. Patel AD, Iversen JR, Wassenaar M, Hagoort P (2008) Musical syntactic processing in agrammatic Broca’s aphasia. Aphasiology 22: 776–789. Available: http://www.informaworld.com/openurl?genre=article&doi=10.1080/02687030701803804&magic=crossref%7C%7CD404A21C5BB053405B1A640AFFD44AE3. Accessed 3 April 2014.
51. François C, Schön D (2011) Musical Expertise Boosts Implicit Learning of Both Musical and Linguistic Structures. Cereb cortex 21: 2357–2365. Available: http://www.ncbi.nlm.nih.gov/pubmed/21383236. Accessed 23 August 2011. doi: 10.1093/cercor/bhr022
52. Huber W, Poeck K, Weniger D (1984) The Aachen Aphasia Test. Adv Neurol 42: 291–303. 6209953
53. Kotz S, Schmidt-Kassow M (2015) Basal ganglia contribution to rule expectancy and temporal predictability in speech. Cortex 68: 48–60. doi: 10.1016/j.cortex.2015.02.021 25863903
54. Delorme A, Makeig S (2004) EEGLAB : an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134: 9–21. doi: 10.1016/j.jneumeth.2003.10.009 15102499
55. Shao J, Tu D (1995) The Jackknife and Bootstrap. Springer. New York, NY: Springer New York. 517 p. http://link.springer.com/10.1007/978-1-4612-0795-5.
56. Lee MD, Wagenmakers E-J (2014) Bayesian cognitive modeling: A practical course. Cambridge.
57. Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45: 152–170. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2365910&tool=pmcentrez&rendertype=abstract. Accessed 24 May 2013. doi: 10.1111/j.1469-8986.2007.00602.x 17850238
58. Linden DEJ (2005) The P300: Where in the brain is it produced and what does it tell us? Neuroscientist 11: 563–576. doi: 10.1177/1073858405280524 16282597
59. Polish J (2007) Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 118: 2128–2148. doi: 10.1016/j.clinph.2007.04.019 17573239
60. Vinter A, Perruchet P (1999) Isolating unconscious influences: the neutral parameter procedure. Q J Exp Psychol 52: 857–875. Available: http://www.ncbi.nlm.nih.gov/pubmed/10605395.
61. Opitz B, Friederici AD (2003) Interactions of the hippocampal system and the prefrontal cortex in learning language-like rules. Neuroimage 19: 1730–1737. Available: http://linkinghub.elsevier.com/retrieve/pii/S1053811903001708. Accessed 13 November 2012. 12948727
62. Seger CA, Prabhakaran V, Poldrack RA, Gabrieli JDE (2000) Neural activity differs between explicit and implicit learning of artificial grammar strings : An fMRI study. Psychobiology 28: 283–292.
63. Flöel A, de Vries MH, Scholz J, Breitenstein C, Johansen-Berg H (2009) White matter integrity in the vicinity of Broca’s area predicts grammar learning success. Neuroimage 47: 1974–1981. Available: http://www.ncbi.nlm.nih.gov/pubmed/19477281. Accessed 13 August 2013. doi: 10.1016/j.neuroimage.2009.05.046
64. Roser ME, Fiser J, Aslin RN, Gazzaniga MS (2011) Right hemisphere dominance in visual statistical learning. J Cogn Neurosci 23: 1088–1099. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3003769&tool=pmcentrez&rendertype=abstract 20433243
65. Tillmann B, Janata P, Bharucha JJ (2003) Activation of the inferior frontal cortex in musical priming. Cogn Brain Res 16: 145–161. Available: http://linkinghub.elsevier.com/retrieve/pii/S0926641002002458. Accessed 5 October 2012.
66. Tillmann B, Koelsch S, Escoffier N, Bigand E, Lalitte P, Friederici A, et al. (2006) Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. Neuroimage 31: 1771–1782. Available: http://www.ncbi.nlm.nih.gov/pubmed/16624581. doi: 10.1016/j.neuroimage.2006.02.028
67. Sammler D, Koelsch S, Friederici AD (2011) Are left fronto-temporal brain areas a prerequisite for normal music-syntactic processing? Cortex 47: 659–673. Available: http://www.ncbi.nlm.nih.gov/pubmed/20570253. Accessed 28 March 2014. doi: 10.1016/j.cortex.2010.04.007
68. Kotz SA, Frisch S, von Cramon DY, Friederici AD (2003) Syntactic language processing: ERP lesion data on the role of the basal ganglia. J Int Neuropsychol Soc 9: 1053–1060. Available: http://www.ncbi.nlm.nih.gov/pubmed/14738286. doi: 10.1017/S1355617703970093
69. Gelfand JR, Bookheimer SY (2003) Dissociating Neural Mechanisms of Temporal Sequencing and Processing Phonemes. Neuron 38: 831–842. doi: 10.1016/s0896-6273(03)00285-x 12797966
70. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381. doi: 10.1146/annurev.ne.09.030186.002041 3085570
71. Ullman MT (2006) Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex 42: 480–485. doi: 10.1016/s0010-9452(08)70382-4 16881254
72. Ullman MT (2001) A neurocognitive perspective on language: the declarative/procedural model. Nat Rev Neurosci 2: 717–726. Available: http://www.ncbi.nlm.nih.gov/pubmed/11584309. doi: 10.1038/35094573
73. Sakai K, Hikosaka O, Miyauchi S, Takino R, Tamada T, Iwata NK, et al. (1999) Neural representation of a rhythm depends on its interval ratio. J Neurosci 19: 10074–10081. Available: http://www.ncbi.nlm.nih.gov/pubmed/10559415.
74. Horvath RA, Schwarcz A, Aradi M, Auer T, Feher N, Kovacs N, et al. (2011) Lateralisation of non-metric rhythm. Laterality Asymmetries Body, Brain Cogn 16: 620–635. Available: http://www.ncbi.nlm.nih.gov/pubmed/21424982. Accessed 22 September 2011.
75. Lieberman MD, Chang GY, Chiao J, Bookheimer SY, Knowlton BJ (2004) An Event-Related fMRI Study of Artificial Grammar Learning in a Balanced Chunk Strength Design. J Cogn Neurosci 16: 427–438. doi: 10.1162/089892904322926764 15072678
76. Meulemans T, Van der Linden M (1997) Associative chunk strength in artificial grammar learning. J Exp Psychol Learn Mem Cogn 23: 1007–1028.
77. Knowlton BJ, Squire LR (1994) The information acquired during artificial grammar learning. J Exp Psychol Learn Mem Cogn 20: 79–91. Available: http://www.ncbi.nlm.nih.gov/pubmed/8138790.
78. Goranskaya D, Kreitewolf J, Mueller JL, Friederici AD, Hartwigsen G (2016) Fronto-Parietal Contributions to Phonological Processes in Successful Artificial Grammar Learning. Front Hum Neurosci 10: 551. Available: http://journal.frontiersin.org/article/10.3389/fnhum.2016.00551%5Cnhttp://journal.frontiersin.org/article/10.3389/fnhum.2016.00551/full 27877120
79. Seidler RD, Purushotham A, Kim S-G, Ugurbil K, Willingham D, Ashe J (2005) Neural correlates of encoding and expression in implicit sequence learning. Exp Brain Res 165: 114–124. Available: http://www.ncbi.nlm.nih.gov/pubmed/15965762. Accessed 26 July 2011. doi: 10.1007/s00221-005-2284-z
80. Vaquero JMM, Jiménez L, Lupiáñez J (2006) The problem of reversals in assessing implicit sequence learning with serial reaction time tasks. Exp brain Res 175: 97–109. Available: http://www.ncbi.nlm.nih.gov/pubmed/16724176. Accessed 12 October 2012. doi: 10.1007/s00221-006-0523-6
81. Cope T, Wilson B, Robson H, Drinkall R, Dean L, Grube M (2017) Artificial grammar learning in vascular and progressive non-fluent aphasias. Neuropsychologia 104: 201–213. doi: 10.1016/j.neuropsychologia.2017.08.022 28843341
82. Opitz B, Kotz SA (2012) Ventral premotor cortex lesions disrupt learning of sequential grammatical structures. Cortex 48: 664–673. Available: http://www.ncbi.nlm.nih.gov/pubmed/21420079. Accessed 10 September 2013. doi: 10.1016/j.cortex.2011.02.013
83. Friederici AD, Oberecker R, Brauer J (2012) Neurophysiological preconditions of syntax acquisition. Psychol Res 76: 204–211. doi: 10.1007/s00426-011-0357-0 21706312
84. Folia V, Udd J, Forkstam C, Petersson KM (2010) Artificial Language Learning in Adults and Children: 188–220.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania