#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Flooding performance evaluation of alkyl aryl sulfonate in various alkaline environments


Autoři: Lei Yan aff001;  Wei Ding aff002
Působiště autorů: School of Goverment, Peking University, Beijing, China aff001;  College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, China aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0219627

Souhrn

Alkaline-Surfactant-Polymer (ASP) flooding is an efficient chemical enhanced oil recovery (EOR) method gaining popularity in the industry. In this paper, the characteristics of three flooding systems with alkyl aryl sulfonate surfactants and a weak alkali concentration, strong alkali concentration and no alkali concentration were investigated. The emulsification, interfacial tension, viscosity, stability, adsorption resistance as well as the oil displacement effect for the flooding systems and simulated oil of the fourth plant of the Daqing Oilfield were measured. The results show that the three alkyl aryl sulphonates surfactants have different emulsification indexes with the weak and strong alkali concentrations possessing the best and worst indexes at 67.00% and 55.17% respectively, and the combination of surfactant and no alkali concentration with an emulsification index of 63.03%. The interfacial tension between the three flooding systems and the simulated oil of the fourth plant of Daqing Oilfield gets as low as 10−3 mN/m, and reduces as far as 10-4mN/m in certain points detected, all with good anti-dilution performance. In terms of interfacial tension stability, the three flooding systems are seen to reach ultra-low interfacial tension within 90 days. For viscosity stability, the addition of a strong alkali and a weak alkali further hydrolyzes the polymer, leading to an initial rise in viscosity and viscosity retention rates above 80%. In terms of adsorption resistance, ultra-low interfacial tension occurs adsorption is reduced by five times for the strong and weak alkali systems, and reduced by four times for the alkali-free system. These results show that all three combination flooding systems have good adsorption resistance. In the evaluation of oil displacement effect, the average chemical flooding recovery rate (33.83%) of the weak alkali-surfactant-polymer (ASP) system is nearly three percent higher (31.34%) than that of the surfactant-polymer (SP) system, and over seven percent higher (26.71%) than that of the strong ASP system.

Klíčová slova:

Biology and life sciences – Biochemistry – Physical sciences – Chemistry – Engineering and technology – Computer and information sciences – Mathematics – Polymer chemistry – Macromolecules – Polymers – Materials science – Materials – Lipids – Physics – Earth sciences – Hydrology – Flooding – Energy and power – Physical chemistry – Systems science – Fuels – Chemical properties – Materials physics – Surfactants – Oils – Fossil fuels – Crude oil – Viscosity – Sorption – Adsorption – System stability


Zdroje

1. Denney D. Progress and effects of ASP flooding. Journal of Petroleum Technology, 2013, 65, 77–81.

2. Sheng J.J., A comprehensive review of alkaline-surfactant-polymer (ASP) flooding. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 471–489.

3. Pu W., Yuan C., Hu W., et al. Effects of interfacial tension and emulsification on displacement efficiency in dilute surfactant flooding. RSC Adv, 2016, 6, 50640–50649.

4. Wang D. Study on ASP flooding, binary system flooding and monosystem flooding in Daqing oilfield. Petroleum Geology & Oilfield Development in Daqing, 2003.

5. Guo C., Wang Y., Zhong Q., et al. Research of interfacial tension and Emulsification performance relevance of ASP compound system. Chinese Journal of Synthetic Chemistry. 2010-S1.

6. Sun L., Wu X., Zhou W., et al. Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield, NE China. Petroleum Exploration and Development, 2018, 45, 113–124.

7. Cheng J., Liao G., Yang Z. Pilot test of ASP flooding in Daqing Oilfield. Petroleum Geology & Oilfield Development in Daqing, 2001, 20, 46–49.

8. Skripkin, A. G., Kusnetsov, I.A., Volokitin. Ya. E., et al. Experimental studies of oil recovery after alkali-surfactant-polymer (ASP) flooding with West Salym cores. SPE Russian Oil and Gas Exploration and Production Technical, Russia, 2012.

9. Hu, G., Ma, D., Wang, H., et al. Review of capillary number in chemical enhanced oil recovery. SPE Kuwait Oil and GasShow and Conference, Kuwait, 2015.

10. Guo, H., Wang, Z., Lessons Learned from Surfactant-Polymer Flooding Field Tests in China. Society of Petroleum Engineers SPE Kuwait Oil & Gas Show and Conference, Kuwait, 2017.

11. Abidin A. Z., Puspasari T., Nugroho W. A., Polymers for Enhanced Oil Recovery Technology. Procedia Chemistry, 2012, 4, 11–16.

12. Xia H., Liu C., Hou J., et al. Effect of viscoelastic behavior and interfacial activity of ASP combinational flooding solution on oil displacement efficiency. Oilfield Chemistry, 2003, 20, 61–64, 93.

13. Olajire Abass A., Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy, 2014, 77, 963–982.

14. Liu H., Zhang Y., Li Y., et al. Influence on Emulsification in Binary Flooding of Oil Displacement Effect. Journal of Dispersion Science and Technology, 2016, 37, 89–96.

15. Yan L., Ding W. Synthesis and properties of alkyl aryl sulfonates with different average molecular weights and distributions. Chemical Industry and Engineering Progress. 2018, 37(S1): 193–198.

16. Hou J., Liu Z., Zhang S., et al. The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery. Journal of Petroleum Science & Engineering, 2005, 47, 219–235.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#