High-throughput RNA-sequencing identifies mesenchymal stem cell-induced immunological signature in a rat model of corneal allograft rejection
Autoři:
Xiaoxiao Lu aff001; Chenchen Chu aff001; Xun Liu aff001; Yichen Gao aff001; Mianmian Wu aff001; Fang Guo aff001; Yahong Li aff001; Chao Geng aff001; Yue Huang aff001; Yan Zhang aff001; Shaozhen Zhao aff001
Působiště autorů:
Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222515
Souhrn
Objective
The immune rejection mediated by CD4+ T cell and antigen presenting macrophages is the leading cause of corneal transplantation failure. Bone marrow-derived mesenchymal stem cells (BM-MSCs) possess robust immunomodulatory potentials, and have been shown by us and others to promote corneal allograft survival. However, the immunological mechanism underlying the protective effects of BM-MSCs remains unclear. Therefore, in the current study, this mechanism was investigated in a BM-MSC-treated rat model of corneal allograft rejection, in the hope to facilitate the search for novel interventional targets to corneal allograft rejection.
Methods
Lewis rats were subjected to corneal transplantation and then received subconjunctival injections of BM-MSCs (2×106 cells / 100 μl PBS) immediately and at day 3 post-transplantation. The control group received the injections of PBS with the same volume. The clinical parameters of the corneal allografts, including opacity, edema, and neovascularization, were regularly evaluated after transplantation. On day 10 post-transplantation, the corneal allografts were collected and subjected to flow cytometry and high-throughput RNA sequencing (RNA-seq). GO enrichment and KEGG pathways were analyzed. The quantitative realtime PCR (qPCR) and immunohistochemistry (IHC) were employed to validate the expression of the selected target genes at transcript and protein levels, respectively.
Results
BM-MSC subconjunctival administration prolonged the corneal allograft survival, with reduced opacity, alleviated edema, and diminished neovascularization. Flow cytometry showed reduced CD4+ T cells and CD68+ macrophages as well as boosted regulatory T cells (Tregs) in the BM-MSC-treated corneal allografts as compared with the PBS-treated counterparts. Moreover, the RNA-seq and qPCR results demonstrated that the transcript abundance of Cytotoxic T-Lymphocyte Associated Protein 4 (Ctla4), Protein Tyrosine Phosphatase, Receptor Type C (Ptprc), and C-X-C Motif Chemokine Ligand 9 (Cxcl9) genes were increased in the allografts of BM-MSC group compared with PBS group; whereas the expression of Heat Shock Protein Family A (Hsp70) Member 8 (Hspa8) gene was downregulated. The expression of these genes was confirmed by IHC at protein level.
Conclusion
Subconjunctival injections of BM-MSCs promoted corneal allograft survival, reduced CD4+ and CD68+ cell infiltration, and enriched Treg population in the allografts. The BM-MSC-induced upregulation of Ctla4, Ptprc, Cxcl9 genes and downregulation of Hspa8 gene might contribute to the protective effects of BM-MSCs and subserve the potential interventional targets to corneal allograft rejection.
Klíčová slova:
Gene expression – T cells – Flow cytometry – Cornea – Opacity – Corneal transplantation – Regulatory T cells
Zdroje
1. Lechler RI, Sykes M, Thomson AW, Turka LA. Organ transplantation—how much of the promise has been realized? Nat Med. 2005;11(6):605–13. doi: 10.1038/nm1251 15937473.
2. Coster DJ, Williams KA. The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Ophthalmol. 2005;140(6):1112–22. doi: 10.1016/j.ajo.2005.07.024 16376660.
3. Amouzegar A, Chauhan SK, Dana R. Alloimmunity and Tolerance in Corneal Transplantation. J Immunol. 2016;196(10):3983–91. doi: 10.4049/jimmunol.1600251 27183635; PubMed Central PMCID: PMC4874505.
4. Tabbara KF. Pharmacologic strategies in the prevention and treatment of corneal transplant rejection. Int Ophthalmol. 2008;28(3):223–32. doi: 10.1007/s10792-007-9100-7 17634865.
5. Yuan J, Zhai JJ, Chen JQ, Ye CT, Zhou SY. Preparation of 0.05% FK506 suspension eyedrops and its pharmacokinetics after topical ocular administration. J Ocul Pharmacol Ther. 2009;25(4):345–50. doi: 10.1089/jop.2008.0125 19492954.
6. Mirabelli P, Peebo BB, Xeroudaki M, Koulikovska M, Lagali N. Early effects of dexamethasone and anti-VEGF therapy in an inflammatory corneal neovascularization model. Exp Eye Res. 2014;125:118–27. doi: 10.1016/j.exer.2014.06.006 24933712.
7. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. doi: 10.1126/science.284.5411.143 10102814.
8. Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013;2013:130763. doi: 10.1155/2013/130763 24194766; PubMed Central PMCID: PMC3806396.
9. Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62–8. doi: 10.1016/j.ymeth.2015.09.016 26384580.
10. Lu X, Wang X, Nian H, Yang D, Wei R. Mesenchymal stem cells for treating autoimmune dacryoadenitis. Stem Cell Res Ther. 2017;8(1):126. doi: 10.1186/s13287-017-0593-3 28583168; PubMed Central PMCID: PMC5460436.
11. Usha Shalini P, Vidyasagar JV, Kona LK, Ponnana M, Chelluri LK. In vitro allogeneic immune cell response to mesenchymal stromal cells derived from human adipose in patients with rheumatoid arthritis. Cell Immunol. 2017;314:18–25. doi: 10.1016/j.cellimm.2017.01.008 28108005.
12. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol. 2009;183(2):993–1004. doi: 10.4049/jimmunol.0900803 19561093; PubMed Central PMCID: PMC3895445.
13. Ben Nasr M, Fiorina P. Novel therapies for T1D on the horizon. Pharmacol Res. 2015;98:1–2. doi: 10.1016/j.phrs.2015.03.019 25882249.
14. Moravej A, Geramizadeh B, Azarpira N, Zarnani AH, Yaghobi R, Kalani M, et al. Mesenchymal stem cells increase skin graft survival time and up-regulate PD-L1 expression in splenocytes of mice. Immunol Lett. 2017;182:39–49. doi: 10.1016/j.imlet.2017.01.005 28069488.
15. Inoue S, Popp FC, Koehl GE, Piso P, Schlitt HJ, Geissler EK, et al. Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model. Transplantation. 2006;81(11):1589–95. doi: 10.1097/01.tp.0000209919.90630.7b 16770249.
16. Ben Nasr M, Vergani A, Avruch J, Liu L, Kefaloyianni E, D'Addio F, et al. Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetol. 2015;52(5):917–27. doi: 10.1007/s00592-015-0735-y 25808641; PubMed Central PMCID: PMC4968999.
17. Perico N, Casiraghi F, Introna M, Gotti E, Todeschini M, Cavinato RA, et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011;6(2):412–22. doi: 10.2215/CJN.04950610 20930086; PubMed Central PMCID: PMC3052234.
18. Jia Z, Jiao C, Zhao S, Li X, Ren X, Zhang L, et al. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res. 2012;102:44–9. doi: 10.1016/j.exer.2012.06.008 22800963.
19. Jia Z, Li F, Zeng X, Lv Y, Zhao S. The effects of local administration of mesenchymal stem cells on rat corneal allograft rejection. BMC Ophthalmol. 2018;18(1):139. doi: 10.1186/s12886-018-0802-6 29884142; PubMed Central PMCID: PMC5994063.
20. Lohan P, Murphy N, Treacy O, Lynch K, Morcos M, Chen B, et al. Third-Party Allogeneic Mesenchymal Stromal Cells Prevent Rejection in a Pre-sensitized High-Risk Model of Corneal Transplantation. Front Immunol. 2018;9:2666. doi: 10.3389/fimmu.2018.02666 30515159; PubMed Central PMCID: PMC6255848.
21. Chai YJ, Chae H, Kim K, Lee H, Choi S, Lee KE, et al. Comparative Gene Expression Profiles in Parathyroid Adenoma and Normal Parathyroid Tissue. J Clin Med. 2019;8(3). doi: 10.3390/jcm8030297 30832348; PubMed Central PMCID: PMC6463127.
22. Davies R, Sarkar I, Hammenfors D, Bergum B, Vogelsang P, Solberg SM, et al. Single Cell Based Phosphorylation Profiling Identifies Alterations in Toll-Like Receptor 7 and 9 Signaling in Patients With Primary Sjogren's Syndrome. Front Immunol. 2019;10:281. doi: 10.3389/fimmu.2019.00281 30846988; PubMed Central PMCID: PMC6393381.
23. Sheu CC, Chang WA, Tsai MJ, Liao SH, Chong IW, Kuo PL. Gene Expression Changes Associated with Nintedanib Treatment in Idiopathic Pulmonary Fibrosis Fibroblasts: A Next-Generation Sequencing and Bioinformatics Study. J Clin Med. 2019;8(3). doi: 10.3390/jcm8030308 PubMed Central PMCID: PMC6462954. 30841487
24. Ye H, Wang X, Wang L, Chu X, Hu X, Sun L, et al. Full high-throughput sequencing analysis of differences in expression profiles of long noncoding RNAs and their mechanisms of action in systemic lupus erythematosus. Arthritis Res Ther. 2019;21(1):70. doi: 10.1186/s13075-019-1853-7 30836987; PubMed Central PMCID: PMC6402184.
25. Larkin DF, Calder VL, Lightman SL. Identification and characterization of cells infiltrating the graft and aqueous humour in rat corneal allograft rejection. Clin Exp Immunol. 1997;107(2):381–91. doi: 10.1111/j.1365-2249.1997.279-ce1171.x 9030879; PubMed Central PMCID: PMC1904582.
26. Fiorina P, Jurewicz M, Tanaka K, Behazin N, Augello A, Vergani A, et al. Characterization of donor dendritic cells and enhancement of dendritic cell efflux with CC-chemokine ligand 21: a novel strategy to prolong islet allograft survival. Diabetes. 2007;56(4):912–20. doi: 10.2337/db06-1445 17287465.
27. Di G, Du X, Qi X, Zhao X, Duan H, Li S, et al. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch. Invest Ophthalmol Vis Sci. 2017;58(10):4344–54. doi: 10.1167/iovs.17-21506 28810264.
28. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. doi: 10.1038/nmeth.1923 22388286; PubMed Central PMCID: PMC3322381.
29. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67. doi: 10.1038/nprot.2016.095 27560171; PubMed Central PMCID: PMC5032908.
30. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. doi: 10.1038/nbt.1621 20436464; PubMed Central PMCID: PMC3146043.
31. Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014;9(5):e96801. doi: 10.1371/journal.pone.0096801 24802416; PubMed Central PMCID: PMC4011881.
32. Hancock WW, Sayegh MH, Zheng XG, Peach R, Linsley PS, Turka LA. Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection. Proc Natl Acad Sci U S A. 1996;93(24):13967–72. doi: 10.1073/pnas.93.24.13967 8943044; PubMed Central PMCID: PMC19478.
33. Judge TA, Tang A, Spain LM, Deans-Gratiot J, Sayegh MH, Turka LA. The in vivo mechanism of action of CTLA4Ig. J Immunol. 1996;156(6):2294–9. 8690920; PubMed Central PMCID: PMC2849296.
34. Ezzelarab MB, Lu L, Shufesky WF, Morelli AE, Thomson AW. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4(+)CTLA4(hi) T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade. Front Immunol. 2018;9:250. doi: 10.3389/fimmu.2018.00250 29520267; PubMed Central PMCID: PMC5827543.
35. Leibler C, Thiolat A, Elsner RA, El Karoui K, Samson C, Grimbert P. Costimulatory blockade molecules and B-cell-mediated immune response: current knowledge and perspectives. Kidney international. 2019;95(4):774–86. doi: 10.1016/j.kint.2018.10.028 30711200.
36. Sakurai J, Ohata J, Saito K, Miyajima H, Hirano T, Kohsaka T, et al. Blockade of CTLA-4 signals inhibits Th2-mediated murine chronic graft-versus-host disease by an enhanced expansion of regulatory CD8+ T cells. J Immunol. 2000;164(2):664–9. doi: 10.4049/jimmunol.164.2.664 10623808.
37. Khiew SH, Yang J, Young JS, Chen J, Wang Q, Yin D, et al. CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients. JCI Insight. 2017;2(9). doi: 10.1172/jci.insight.92033 28469082; PubMed Central PMCID: PMC5414557.
38. Young JS, Khiew SH, Yang J, Vannier A, Yin D, Sciammas R, et al. Successful Treatment of T Cell-Mediated Acute Rejection with Delayed CTLA4-Ig in Mice. Front Immunol. 2017;8:1169. doi: 10.3389/fimmu.2017.01169 28970838; PubMed Central PMCID: PMC5609110.
39. Camirand G, Wang Y, Lu Y, Wan YY, Lin Y, Deng S, et al. CD45 ligation expands Tregs by promoting interactions with DCs. J Clin Invest. 2014;124(10):4603–13. doi: 10.1172/JCI74087 25202978; PubMed Central PMCID: PMC4191025.
40. Koper OM, Kaminska J, Sawicki K, Kemona H. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp Med. 2018;27(6):849–56. doi: 10.17219/acem/68846 29893515.
41. Farber JM. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol. 1997;61(3):246–57. 9060447.
42. Vellasamy S, Tong CK, Azhar NA, Kodiappan R, Chan SC, Veerakumarasivam A, et al. Human mesenchymal stromal cells modulate T-cell immune response via transcriptomic regulation. Cytotherapy. 2016;18(10):1270–83. doi: 10.1016/j.jcyt.2016.06.017 27543068.
43. Qiao SK, Ren HY, Shi YJ, Liu W. Allogeneic Compact Bone-Derived Mesenchymal Stem Cell Transplantation Attenuates the Severity of Idiopathic Pneumonia Syndrome in a Murine Bone Marrow Transplantation Model. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2016;40(6):1656–69. doi: 10.1159/000453215 28006781.
44. Xie C, Yang Z, Suo Y, Chen Q, Wei D, Weng X, et al. Systemically Infused Mesenchymal Stem Cells Show Different Homing Profiles in Healthy and Tumor Mouse Models. Stem Cells Transl Med. 2017;6(4):1120–31. doi: 10.1002/sctm.16-0204 28205428; PubMed Central PMCID: PMC5442841.
45. Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62(6):670–84. doi: 10.1007/s00018-004-4464-6 15770419; PubMed Central PMCID: PMC2773841.
46. Xilouri M, Stefanis L. Chaperone mediated autophagy in aging: Starve to prosper. Ageing Res Rev. 2016;32:13–21. doi: 10.1016/j.arr.2016.07.001 27484893.
47. Rafiee P, Theriot ME, Nelson VM, Heidemann J, Kanaa Y, Horowitz SA, et al. Human esophageal microvascular endothelial cells respond to acidic pH stress by PI3K/AKT and p38 MAPK-regulated induction of Hsp70 and Hsp27. Am J Physiol Cell Physiol. 2006;291(5):C931–45. doi: 10.1152/ajpcell.00474.2005 16790501.
48. Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy. 2013;9(12):1937–54. doi: 10.4161/auto.26448 24121476.
49. Trieb K, Dirnhofer S, Krumbock N, Blahovec H, Sgonc R, Margreiter R, et al. Heat shock protein expression in the transplanted human kidney. Transplant international: official journal of the European Society for Organ Transplantation. 2001;14(5):281–6. doi: 10.1007/s001470100325 11692211.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania