Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.)
Autoři:
Waquar Akhter Ansari aff001; Neelam Atri aff002; Javed Ahmad aff003; Mohammad Irfan Qureshi aff003; Bijendra Singh aff001; Ram Kumar aff004; Vandna Rai aff004; Sudhakar Pandey aff001
Působiště autorů:
ICAR–Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
aff001; Department of Botany, M.M.V., Banaras Hindu University, Varanasi, Uttar Pradesh, India
aff002; Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
aff003; ICAR–National Research Centre on Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, India
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222647
Souhrn
Water deficiency up to a certain level and duration leads to a stress condition called drought. It is a multi-dimensional stress causing alteration in the physiological, morphological, biochemical, and molecular traits in plants resulting in improper plant growth and development. Drought is one of the major abiotic stresses responsible for loss of crops including muskmelon (Cucumis melo. L). Muskmelon genotype SC-15, which exhibits high drought resistance as reported in our earlier reports, was exposed to deficient water condition and studied for alteration in physiological, molecular and proteomic profile changes in the leaves. Drought stress results in reduced net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration (E) rate. With expanded severity of drought, declination recorded in content of total chlorophyll and carotenoid while enhancement observed in phenol content indicating generation of oxidative stress. In contrary, activities of catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol (POD) were increased under drought stress. Peptide mass fingerprinting (PMF) showed that drought increased the relative abundance of 38 spots while decreases10 spots of protein. The identified proteins belong to protein synthesis, photosynthesis, nucleotide biosynthesis, stress response, transcription regulation, metabolism, energy and DNA binding. A drought-induced MADS-box transcription factor was identified. The present findings indicate that under drought muskmelon elevates the abundance of defense proteins and suppresses catabolic proteins. The data obtained exhibits possible mechanisms adopted by muskmelon to counter the impacts of drought induced stress.
Klíčová slova:
DNA-binding proteins – Transcription factors – Plant resistance to abiotic stress – Leaves – Protein expression – Chlorophyll – Transcriptional control – Drought
Zdroje
1. Dhillon N. P., Monforte A. J., Pitrat M., Pandey S., Singh P. K., and Reitsma K. R., et al. (2011). Melon landraces of India: contributions and importance. Plant Breeding Review 35, 85–150.
2. Ibrahim E. A. (2012) Variability, heritability and genetic advance in Egyptian sweet melon (Cucumis melo var. Aegyptiacus L.) under water stress condition. International J. Plant Breed. Genet. 6, 238–244.3.
3. FAOSTAT database, Food and Agriculture Organization Corporate Statistical Database, 2018. Available at: http://www.faostat.fao.org.
4. Srinivas K., Hegde D. M., and Havanagi G. V. (1989). Plant water relations, canopy temperature, yield and water-use efficiency of watermelon (Citrullus Lanatus (Thunb.)) under drip and furrow irrigation. Aust. J. Agric. Res. 6, 115–124.
5. Feng X. H., and Wu D. K. (2007). Planting cucurbits in gravel mulched land. China Cucurbits and Vegetables, 1, 57–58.
6. Jimenez S., Dridi J., Gutierrez D., Moret D., Irigoyen J. J., and Moreno M. A. (2013). Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol. 33, 1061–1075. doi: 10.1093/treephys/tpt074 24162335
7. Kusvuran S. (2012). Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). Afr. J. Agr. Res. 7(5), 775–781.
8. Deeba F., Pandey A. K., Ranjan S., Mishra A., Singh R., and Sharma Y. K., et al. (2012). Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol. Biochem. 53, 6–18. doi: 10.1016/j.plaphy.2012.01.002 22285410
9. Pandey S., Ansari W. A., Jha A., Bhatt K. V., and Singh B. (2013). Evaluation of melons and indigenous cucumis spp. genotypes for drought tolerance. Acta Hort. 979, 335–339.
10. Ansari W. A., Atri N., Singh B. and Pandey S. (2017). Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biol. Plantarum 61(2), 333–341.
11. Lin H. H., Lin K. H., Syu J. Y., Tang S. Y., and Lo H. F. (2016). Physiological and proteomic analysis in two wild tomato lines under water logging and high temperature stress. J. Plant Biochem. Biotechnol. 25(1), 87–96.
12. Pandey S., Ansari W. A., Atri N., Singh B., Gupta S., and Bhat K. V. (2016). Standardization of screening technique and evaluation of muskmelon genotypes for drought tolerance. Plant Genet. Resour. 16, 1–8.
13. Ansari W. A., Atri N., Singh B., Kumar P., and Pandey S. (2018). Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica 56, 1019–1030.
14. Mitra J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Curr. Sci. 80, 758–763.
15. Faghani E., Gharechahi J., Komatsu S., Mirzaei M., Khavarinejad R. A., and Najafi F., et al. (2015). Data in support of comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. Data in Brief 2, 26–28. doi: 10.1016/j.dib.2014.11.001 26217700
16. Koh J., Chen G., Yoo M. J., Zhu N., Dufresne D., and Erickson J. E., et al. Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress. J. Proteome Res. 14(8), 3068–3081. doi: 10.1021/pr501323d 26086353
17. Kim S. G., Lee J. S., Kim J. T., Kwon Y. S., Bae D. W., and Shin S., et al. Physiological and proteomic analysis of the response to drought stress in an inbred Korean maize line. P. O. J. 8(2), 159–168.
18. Ashoub A., Beckhaus T., Berberich T., Karas M., and Bruggemann W. (2013). Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237, 771–781. doi: 10.1007/s00425-012-1798-4 23129216
19. Yoshimura K., Masuda A., Kuwano M., Yokota A., and Akashi K. (2008). Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol. 49(2), 226–241. doi: 10.1093/pcp/pcm180 18178965
20. Fan L., Wua X., Tian Z., Jia K., Pan Y., and Li J., et al. (2015). Comparative proteomic analysis of gamma-aminobutyric acid responses in hypoxia-treated and untreated melon roots. Phytochemistry 116, 28–37. doi: 10.1016/j.phytochem.2015.02.023 25840728
21. Malter D., and Wolf S. (2011). Melon phloem-sap proteome: developmental control and response to viral infection. Protoplasma 248, 217–224. doi: 10.1007/s00709-010-0215-8 20924770
22. Coombs J., Hall D. O., Long S. P., and Scurlock J. M. O. (1987). Techniques in Bioproductivity and Photosynthesis, Pergamon Press, Oxford, UK.
23. Kausar A., Ashraf M. Y., Ali I., Niazi M., and Abbass Q. (2012). Evaluation of sorghum varieties/lines for salt tolerance using physiological indices as screening tool. Pak. J. Bot. 44, 47–52.
24. Cha-um S., Supaibulwatana K., and Kirdmanee C. (2007). Glycine betaine accumulation, physiological characterizations and growth efficiency in salt tolerant and salt sensitive lines of indica rice (Oryza sativa L. spp. indica) response to salt stress. J. Agron. Crops Sci. 193, 157–166.
25. Maxwell K., and Johnson G. N. (2000). Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668. doi: 10.1093/jxb/51.345.659 10938857
26. Lichtenthaler H. K. B. C. (2001). Current Protocols in Food Analytical Chemistry, John Wiley and Sons, New York, F4.2.1–F4.2.6.
27. Zieslin N., and Ben-Zaken R. (1993). Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol. Biochem. 31, 333–340.
28. Zhao Y. Y., Qian C. L., Chen J. C., Peng Y., and Mao L. C. (2010). Responses of phospholipase D and lipoxygenase to mechanical wounding in postharvest cucumber fruits. J. Zhejiang. Univ. Sci. B. 11, 443–450, 2010.
29. Carpentier S. C., Witters E., Laukens K., Deckers P., Swennen R., and Panis B. (2005). Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5, 2497–2507. doi: 10.1002/pmic.200401222 15912556
30. Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248–254. doi: 10.1006/abio.1976.9999 942051
31. Candiano G., Bruschi M., Musante L., Santucci L., Ghiggeri G. M., and Carnemolla B., et al. (2004). Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327–1333. doi: 10.1002/elps.200305844 15174055
32. Shevchenko A., Tomas H., Havli J., Olsen J. V., Mann M. (2006). Ingel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860. doi: 10.1038/nprot.2006.468 17406544
33. Chen J., Shi J., Tian D., Yang L., Luo Y., and Yin D., et al., (2011). Improved protein identification using a species-specific protein/ peptide database derived from expressed sequence tags. Plant Omics J. 4(5), 257–263.
34. Wu A., Allu A. D., Garapati P., Siddiqui H., Dortay H., and Zanor M. I., et al. (2012). JUNGBRUNNEN, a reactive oxygen species responsive NAC transcription factor, regulates longevity in Arabidopsis. Online Plant Cell 24, 482–506.
35. Gupta O. P., Mishra V., Singh N. K., Tiwari R., Sharma P., and Gupta R. K., et al. (2015). Deciphering the dynamics of changing proteins of tolerant and intolerant wheat seedlings subjected to heat stress. Mol. Biol. Rep. 42(1), 43–51. doi: 10.1007/s11033-014-3738-9 25218843
36. Ranjbarfordoei A., Samson R., and Damme P. V. (2006). Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica 44, 513–522.
37. Blokhina O., Virolainen E., and Fagerstedt K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194. doi: 10.1093/aob/mcf118 12509339
38. Wang H., Zhang L., Ma J., Li X., Li Y., and Zhang R., et al., (2010). Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage. Agri. Sci. China 9, 633–641.
39. Nawaz M.A., Chen C., Shireen F., Zheng Z., Jiao Y., and Sohail H., et al., (2018). Improving vanadium stress tolerance of watermelon by grafting onto bottle gourd and pumpkin rootstock. Plant Gro. Regul. 85(1), 41–56.
40. Yang P., Nawaz M.A., Li F., Bai L. and Li J. (2019). Brassinosteroids regulate antioxidant system and protect chloroplast ultrastructure of autotoxicity-stressed cucumber (Cucumis sativus L.) seedlings. Agronomy 9(5), 265.
41. Yang Z., Wu Y., Li Y., Ling H. Q., and Chu C. (2009). OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol. Biol. 70, 219–229. doi: 10.1007/s11103-009-9466-1 19229638
42. Li Y. J., Hai R. L., Du X. H., Jiang X. N., and Lu H. (2009). Overexpression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breed. 128, 404–410.
43. Sanjeeta K., Parkash J., Kalita P. J., Devi M., Pathania J., and Joshi R., et al. (2014). Comparative proteome analysis of Picrorhizakurrooa Royle ex Benth. in response to drought. J. Proteome Sci. Comput. Biol. 3(1), 2.
44. Bagheri R., Bashir H., Ahmad J., Iqbal M., and Qureshi M. I. (2015). Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress. Plant Physiol. Biochem. 97, 235–245. doi: 10.1016/j.plaphy.2015.10.012 26497449
45. Shu L. B., Ding W., Wu J. H., Feng F. J., Luo L. J., and Mei H. W. (2010). Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals. J. Integr. Plant Biol. 52, 981–995. doi: 10.1111/j.1744-7909.2010.00986.x 20977656
46. Tai F. J., Yuan Z. L., Wu X. L., Zhao P. F., and Hu X. L., et al. (2011) Identification of membrane proteins in maize leaves, altered in expression under drought stress through polyethylene glycol treatment. Plant Omics 4, 250–256.
47. Zhao Y., Du H. M., Wang Z. L., and Huang B. R. (2011). Identification of proteins associated with water-deficit tolerance in C(4) perennial grass species, Cynodondactylon x Cynodontrans vaalensis and Cynodondactylon. Physiol. Plant. 141, 40–55. doi: 10.1111/j.1399-3054.2010.01419.x 21029106
48. Nawaz M.A., Chen C., Shireen F., Zheng Z., Sohail H., and Afzal M., et al., (2018). Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen. BMC genomics, 19(1), 456. doi: 10.1186/s12864-018-4856-x 29898660
49. Koslowsky S., Riegler H., Bergmüller E., Zrenner R. (2008). Higher biomass accumulation by increasing phosphoribosyl pyrophosphate synthetase activity in Arabidopsis thaliana and Nicotiana tabacum. Plant Biotechnol. J. 6, 281–294. doi: 10.1111/j.1467-7652.2007.00314.x 18086232
50. Langenkämper G., Manac'h N., Broin M., Cuiné S., Becuwe N., and Kuntz M., et al. (2001). Accumulation of plastid lipid‐associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J. Exp. Bot. 52 (360), 1545–1554. doi: 10.1093/jexbot/52.360.1545 11457915
51. Hu R., Qi G., Kong Y., Kong D., Gao Q., and Zhou G. (2010). Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biology 10(1), 1.
52. Bakshi M., and Oelmuller R. (2014). WRKY transcription factors Jack of many trades in plants. Plant Signal Behav. 9, e27700. doi: 10.4161/psb.27700 24492469
53. Ali G. M., and Komatsu S. (2006). Proteomic analysis of rice leaf sheath during drought stress. J. Proteome Res. 5, 396–403. doi: 10.1021/pr050291g 16457606
54. Leonardi R., Zhang Y. M., Rock C. O., and Jackowski S. (2005). Coenzyme A: back in action. Progress in lipid research 44(2), 125–153.
55. Huo C. M., Zhao B. C., Ge R. C., Shen Y. Z., and Huang Z. J. (2004). Proteomic analysis of the salt tolerance mutant of wheat under salt stress. 31(12), 1408–1414. 15633648
56. Jangpromma N., Kitthaisong S., Lomthaisong K., Daduang S., Jaisil P., and Thammasirirak S. (2010). A proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant sugarcane cultivars. American J. Biochem. Biotech. 6(2), 89–102.
57. Zhou G., Yang L. T., Li Y. R., Zou C. L., Huang L. P., and Qiu L. H., et al. (2012). Proteomic analysis of osmotic stress-responsive proteins in sugarcane leaves. Plant Mol. Biol. Rep. 30, 349–359.
58. Castillejo M. A., Maldonado A. M., Ogueta S., and Jorrin J. V. (2008). Proteomic analysis of responses to drought stress in sunflower (Helianthus annuus) leaves by 2DE gel electrophoresis and mass spectrometry. Open Proteomics J. 1, 59–71.
59. Franck P., and Fred B. (2011). Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS Journal 278, 195–205. doi: 10.1111/j.1742-4658.2010.07948.x 21156024
60. Ke Y., Han G., He H., and Li J. (2009). Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem. Biophys. Res. Commun. 379, 133–138. doi: 10.1016/j.bbrc.2008.12.067 19103168
61. Bouche N., Yellin A., Snedden W. A., and Fromm H. (2005). Plant-specific calmodulin binding proteins. Annu. Rev. Plant Biol. 56, 435–466. doi: 10.1146/annurev.arplant.56.032604.144224 15862103
62. Brown R. E., and Mattjus P. (2007). Glycolipid transfer protein–Review. Biochim. Biophys. Acta. 1771, 746–776. doi: 10.1016/j.bbalip.2007.01.011 17320476
63. Chaves M. M., Maroco J. P., and Pereira J. (2003). Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biol. 30, 239–264.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania