#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

uORF-Tools—Workflow for the determination of translation-regulatory upstream open reading frames


Autoři: Anica Scholz aff001;  Florian Eggenhofer aff002;  Rick Gelhausen aff002;  Björn Grüning aff002;  Kathi Zarnack aff003;  Bernhard Brüne aff001;  Rolf Backofen aff002;  Tobias Schmid aff001
Působiště autorů: Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany aff001;  Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany aff002;  Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Frankfurt am Main, Germany aff003;  Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222459

Souhrn

Ribosome profiling (ribo-seq) provides a means to analyze active translation by determining ribosome occupancy in a transcriptome-wide manner. The vast majority of ribosome protected fragments (RPFs) resides within the protein-coding sequence of mRNAs. However, commonly reads are also found within the transcript leader sequence (TLS) (aka 5’ untranslated region) preceding the main open reading frame (ORF), indicating the translation of regulatory upstream ORFs (uORFs). Here, we present a workflow for the identification of translation-regulatory uORFs. Specifically, uORF-Tools uses Ribo-TISH to identify uORFs within a given dataset and generates a uORF annotation file. In addition, a comprehensive human uORF annotation file, based on 35 ribo-seq files, is provided, which can serve as an alternative input file for the workflow. To assess the translation-regulatory activity of the uORFs, stimulus-induced changes in the ratio of the RPFs residing in the main ORFs relative to those found in the associated uORFs are determined. The resulting output file allows for the easy identification of candidate uORFs, which have translation-inhibitory effects on their associated main ORFs. uORF-Tools is available as a free and open Snakemake workflow at https://github.com/Biochemistry1-FFM/uORF-Tools. It is easily installed and all necessary tools are provided in a version-controlled manner, which also ensures lasting usability. uORF-Tools is designed for intuitive use and requires only limited computing times and resources.

Klíčová slova:

Biology and life sciences – Cell biology – Genetics – Gene expression – Genomics – Genome analysis – Genome annotation – Biochemistry – Nucleic acids – Computational biology – Cell processes – Cellular structures and organelles – RNA – Messenger RNA – Protein translation – Gene prediction – Transcriptome analysis – Ribosomes – Translation initiation – Cellular stress responses


Zdroje

1. Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol. 2012;4(10): a011544. doi: 10.1101/cshperspect.a011544 22815232

2. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012;485(7396): 109–113. doi: 10.1038/nature11083 22552098

3. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science. 2016;352(6292): 1413–1416. doi: 10.1126/science.aad9868 27313038

4. Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci. 2017;74(9): 1659–1680. doi: 10.1007/s00018-016-2428-2 27913822

5. Walters B, Thompson SR. Cap-Independent Translational Control of Carcinogenesis. Front Oncol. 2016;6: 128. doi: 10.3389/fonc.2016.00128 27252909

6. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324(5924): 218–223. doi: 10.1126/science.1168978 19213877

7. Wethmar K. The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip Rev RNA. 2014;5(6): 765–778. doi: 10.1002/wrna.1245 24995549

8. Young SK, Wek RC. Upstream Open Reading Frames Differentially Regulate Gene-specific Translation in the Integrated Stress Response. J Biol Chem. 2016;291(33): 16927–16935. doi: 10.1074/jbc.R116.733899 27358398

9. Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S. Integrated stress response of vertebrates is regulated by four eIF2α kinases. Sci Rep. 2016;6: 32886. doi: 10.1038/srep32886 27633668

10. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17(10): 1374–1395. doi: 10.15252/embr.201642195 27629041

11. Somers J, Pöyry T, Willis AE. A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol. 2013;45(8): 1690–1700. doi: 10.1016/j.biocel.2013.04.020 23624144

12. McGillivray P, Ault R, Pawashe M, Kitchen R, Balasubramanian S, Gerstein M. A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res. 2018;46(7): 3326–3338. doi: 10.1093/nar/gky188 29562350

13. Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, Fleming ES, et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 2014;33(9): 981–993. doi: 10.1002/embj.201488411 24705786

14. Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M, et al. Detecting actively translated open reading frames in ribosome profiling data. Nat Methods. 2016;13(2): 165–170. doi: 10.1038/nmeth.3688 26657557

15. Clamer M, Tebaldi T, Lauria F, Bernabò P, Gómez-Biagi RF, Marchioretto M, et al. Active Ribosome Profiling with RiboLace. Cell Rep. 2018;25(4): 1097–1108. doi: 10.1016/j.celrep.2018.09.084 30355487

16. Erhard F, Halenius A, Zimmermann C, L’Hernault A, Kowalewski DJ, Weekes MP, et al. Improved Ribo-seq enables identification of cryptic translation events. Nat Methods. 2018;15(5): 363–366. doi: 10.1038/nmeth.4631 29529017

17. Ji Z. RibORF: Identifying Genome-Wide Translated Open Reading Frames Using Ribosome Profiling. Curr Protoc Mol Biol. 2018;124(1): e67. doi: 10.1002/cpmb.67 30178897

18. Olexiouk V, Van Criekinge W, Menschaert G. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res. 2018;46(D1): D497–D502. doi: 10.1093/nar/gkx1130 29140531

19. Xiao Z, Huang R, Xing X, Chen Y, Deng H, Yang X. De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Res. 2018;46(10): e61. doi: 10.1093/nar/gky179 29538776

20. Xu Z, Hu L, Shi B, Geng S, Xu L, Wang D, et al. Ribosome elongating footprints denoised by wavelet transform comprehensively characterize dynamic cellular translation events. Nucleic Acids Res. 2018;46(18): e109. doi: 10.1093/nar/gky533 29945224

21. Zhang P, He D, Xu Y, Hou J, Pan BF, Wang Y, et al. Genome-wide identification and differential analysis of translational initiation. Nat Commun. 2017;8(1): 1749. doi: 10.1038/s41467-017-01981-8 29170441

22. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19): 2520–2522. 22908215

23. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018;15(7): 475–476. doi: 10.1038/s41592-018-0046-7 29967506

24. Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A. 2009;106(18): 7507–7512. doi: 10.1073/pnas.0810916106 19372376

25. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12): 550. doi: 10.1186/s13059-014-0550-8 25516281

26. Lee Y, Cevallos RC, Jan E. An Upstream Open Reading Frame Regulates Translation of GADD34 during Cellular Stresses That Induce eIF2α Phosphorylation. J Biol Chem. 2009;284: 6661–6673. doi: 10.1074/jbc.M806735200 19131336

27. Andreev DE, O’Connor PB, Fahey C, Kenny EM, Terenin IM, Dmitriev SE, et al. Translation of 5' leaders is pervasive in genes resistant to eIF2 repression. Elife. 2015;4: e03971. doi: 10.7554/eLife.03971 25621764

28. Woo YM, Kwak Y, Namkoong S, Kristjánsdóttir K, Lee SH, Lee JH, et al. TED-Seq Identifies the Dynamics of Poly(A) Length during ER Stress. Cell Rep. 2018;24(13): 3630–3641. doi: 10.1016/j.celrep.2018.08.084 30257221


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#