Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure
Autoři:
Tomas Vetrovsky aff001; Michal Siranec aff002; Jitka Marencakova aff001; James J. Tufano aff001; Vaclav Capek aff003; Vaclav Bunc aff001; prof. MUDr. Jan Bělohlávek, Ph.D. aff002
Působiště autorů:
Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
aff001; 2nd Department of Medicine – Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
aff002; Second Faculty of Medicine, Charles University, Prague, Czech Republic
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222569
Souhrn
Introduction
Although numerous activity trackers have been validated in healthy populations, validation is lacking in chronic heart failure patients who normally walk at a slower pace, making it difficult for researchers and clinicians to implement activity monitors during physical activity interventions.
Methods
Six consumer-level activity monitors were validated in a 3-day field study in patients with chronic heart failure and healthy individuals under free living conditions. Furthermore, the same devices were evaluated in a lab-based study during treadmill walking at speeds of 2.4, 3.0, 3.6, and 4.2 km·h-1. Concordance correlation coefficients (CCC) were used to evaluate the agreement between the activity monitors and the criterion, and mean absolute percentage errors (MAPE) were calculated to assess differences between each device and the criterion (MAPE <10% was considered as a threshold for validity).
Results
In the field study of healthy individuals, all but one of the activity monitors showed a substantial correlation (CCC ≥0.95) with the criterion device and MAPE <10%. In patients with heart failure, the correlation of only two activity monitors (Garmin vívofit 3 and Withings Go) was classified as at least moderate (CCC ≥0.90) and none of the devices had MAPE <10%. In the lab-based study at speeds 4.2 and 3.6 km·h-1, all activity monitors showed substantial to almost perfect correlations (CCC ≥0.95) with the criterion and MAPE in the range 1%-3%. However, at slower speeds of 3.0 and 2.4 km·h-1, the accuracy of all devices substantially deteriorated: their correlation with the criterion decreased below 90% and their MAPE increased to 4–8% and 10–45%, respectively.
Conclusions
Even though none of the tested activity monitors fall within arbitrary thresholds for validity, most of them perform reasonably well enough to be useful tools that clinicians can use to simply motivate chronic heart failure patients to walk more.
Klíčová slova:
Biology and life sciences – Engineering and technology – Anatomy – Medicine and health sciences – Physiology – Electronics – Equipment – Cardiology – Musculoskeletal system – Body limbs – Arms – Biological locomotion – Heart failure – Measurement equipment – Accelerometers – Ejection fraction – Walking – Anthropometry
Zdroje
1. Piepoli MF, Conraads V, Corrà U, Dickstein K, Francis DP, Jaarsma T, et al. Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail. 2011 Apr;13(4):347–57. doi: 10.1093/eurjhf/hfr017 21436360
2. Long L, Mordi IR, Bridges C, Sagar VA, Davies EJ, Coats AJ, et al. Exercise-based cardiac rehabilitation for adults with heart failure. Cochrane Heart Group, editor. Cochrane Database Syst Rev. 2019 Jan 29;8(5):860–184.
3. Nolte K, Herrmann-Lingen C, Wachter R, Gelbrich G, Düngen H-D, Duvinage A, et al. Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: the Ex-DHF-P trial. Eur J Prev Cardiol. 2015 May;22(5):582–93. doi: 10.1177/2047487314526071 24627449
4. Conraads VM, Deaton C, Piotrowicz E, Santaularia N, Tierney S, Piepoli MF, et al. Adherence of heart failure patients to exercise: barriers and possible solutions: a position statement of the Study Group on Exercise Training in Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2012 May;14(5):451–8. doi: 10.1093/eurjhf/hfs048 22499542
5. Vetrovsky T, Siranec M, Parenica J, Griva M, Stastny J, Precek J, et al. Effect of a 6-month pedometer-based walking intervention on functional capacity in patients with chronic heart failure with reduced (HFrEF) and with preserved (HFpEF) ejection fraction: study protocol for two multicenter randomized controlled trials. J Transl Med. 2017 Jul 3;15(1):153–62. doi: 10.1186/s12967-017-1257-x 28673328
6. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007 Nov 21;298(19):2296–304. doi: 10.1001/jama.298.19.2296 18029834
7. Harris T, Kerry SM, Limb ES, Victor CR, Iliffe S, Ussher M, et al. Effect of a primary care walking intervention with and without nurse support on physical activity levels in 45- to 75-year-olds: the pedometer and consultation evaluation (PACE-UP) cluster randomised clinical trial. PLoS Med. 2017 Jan;14(1):e1002210. doi: 10.1371/journal.pmed.1002210 28045890
8. Vetrovsky T, Čupka J, Dudek M, Kuthanova B, Vetrovska K, Capek V, et al. A pedometer-based walking intervention with and without email counseling in general practice: a pilot randomized controlled trial. BMC Public Health. 2018 May 13;18(1):635–47. doi: 10.1186/s12889-018-5520-8 29769107
9. Lee JA, Williams SM, Brown DD, Laurson KR. Concurrent validation of the Actigraph gt3x+, Polar Active accelerometer, Omron HJ-720 and Yamax Digiwalker SW-701 pedometer step counts in lab-based and free-living settings. J Sports Sci. 2014 Dec 20;33(10):991–1000. doi: 10.1080/02640414.2014.981848 25517396
10. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015 Dec 18;12(1):e192.
11. Šimůnek A, Dygrýn J, Gába A, Jakubec L, Stelzer J, Chmelík F. Validity of Garmin Vívofit and polar loop for measuring daily step counts in free-living conditions in adults. Acta Gymnica. 2016 Jan 1;46(3):129–35.
12. Panizzolo FA, Maiorana AJ, Naylor LH, Dembo L, Lloyd DG, Green DJ, et al. Gait analysis in chronic heart failure: The calf as a locus of impaired walking capacity. J Biomech. 2014 Nov 28;47(15):3719–25. doi: 10.1016/j.jbiomech.2014.09.015 25307437
13. Fokkema T, Kooiman TJM, Krijnen WP, van der Schans CP, De Groot M. Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc. 2017 Apr;49(4):793–800. doi: 10.1249/MSS.0000000000001146 28319983
14. Crouter SE, Schneider PL, Karabulut M, Bassett DR. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003 Aug;35(8):1455–60. doi: 10.1249/01.MSS.0000078932.61440.A2 12900704
15. van Remoortel H, Giavedoni S, Raste Y, Burtin C, Louvaris Z, Gimeno-Santos E, et al. Validity of activity monitors in health and chronic disease: a systematic review. Int J Behav Nutr Phys Act. 2012;9(1):84.
16. Thorup CB, Andreasen JJ, Sørensen EE, Grønkjær M, Dinesen BI, Hansen J. Accuracy of a step counter during treadmill and daily life walking by healthy adults and patients with cardiac disease. BMJ Open. 2017 Mar 30;7(3):e011742–12. doi: 10.1136/bmjopen-2016-011742 28363918
17. Moy ML, Janney AW, Nguyen HQ, Matthess KR, Cohen M, Garshick E, et al. Use of pedometer and Internet-mediated walking program in patients with chronic obstructive pulmonary disease. J Rehabil Res Dev. 2010;47(5):485–96. 20803392
18. Jehn M, Schmidt-Trucksäss A, Schuster T, Hanssen H, Halle M, Köhler F. Pedometer accuracy in patients with chronic heart failure. Int J Sports Med. 2010 Mar;31(3):186–91. doi: 10.1055/s-0029-1243641 20166006
19. Tudor-Locke C, Barreira TV, Schuna JM. Comparison of step outputs for waist and wrist accelerometer attachment sites. Med Sci Sports Exerc. 2014 Aug 13;47(4):1–842.
20. Treacy D, Hassett L, Schurr K, Chagpar S, Paul SS, Sherrington C. Validity of different activity monitors to count steps in an inpatient rehabilitation setting. Phys Ther. 2017 May 1;97(5):581–8. doi: 10.1093/ptj/pzx010 28339904
21. Alshurafa N, Eastwood J-A, Nyamathi S, Xu W, Liu JJ, Sarrafzadeh M. Battery optimization in smartphones for remote health monitoring systems to enhance user adherence. Proceedings of the International Conference on Pervasive Technologies Related to Assistive Environments. New York, NY, USA: ACM Press; 2014. https://muyangamigo.github.io/HAbitsLabWeb/assets/papers/29.pdf, accessed on 29 July 2019.
22. Henriksen A, Haugen Mikalsen M, Woldaregay AZ, Muzny M, Hartvigsen G, Hopstock LA, et al. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res. 2018;20(3):e110–9. doi: 10.2196/jmir.9157 29567635
23. Ferguson T, Rowlands AV, Olds T, Maher C. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. Int J Behav Nutr Phys Act. 2015;12(1):42.
24. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail. 2016 May 20;18(8):891–975. doi: 10.1002/ejhf.592 27207191
25. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011 Sep;14(5):411–6. doi: 10.1016/j.jsams.2011.04.003 21616714
26. John D, Freedson P. ActiGraph and Actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S86–9. doi: 10.1249/MSS.0b013e3182399f5e 22157779
27. Shoemaker MJ, Cartwright K, Hanson K, Serba D, Dickinson MG, Kowalk A. Concurrent validity of daily activity data from Medtronic ICD/CRT devices and the Actigraph GT3X triaxial accelerometer. Cardiopulm Phys Ther J. 2017 Jan;28(1):3–11.
28. An H-S, Jones GC, Kang S-K, Welk GJ, Lee J-M. How valid are wearable physical activity trackers for measuring steps? Eur J Sport Sc. 2016 Nov 14;17(3):360–8.
29. Figueiredo P, Ribeiro PAB, Bona RL, Peyré-Tartaruga LA, Ribeiro JP. Ventilatory determinants of self-selected walking speed in chronic heart failure. Med Sci Sports Exerc. 2013 Mar;45(3):415–9. doi: 10.1249/MSS.0b013e318277968f 23059867
30. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011 Aug;43(8):1575–81. doi: 10.1249/MSS.0b013e31821ece12 21681120
31. Lin LI-K. A Concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255. 2720055
32. McBride GB. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA Client Report: HAM2005-062; National Institute of Water & Atmospheric Research: Hamilton, New Zeeland, May 2005. http://www.medcalc.org/download/pdf/McBride2005.pdf, accessed on 29 July 2019.
33. DeShaw KJ, Ellingson L, Bai Y, Lansing J, Perez M, Welk G. Methods for activity monitor validation studies: an example with the Fitbit Charge. J Meas Phys Behav. 2018 Sep;1(3):130–5.
34. Welk GJ, McClain J, Ainsworth BE. Protocols for evaluating equivalency of accelerometry-based activity monitors. Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S39–49. doi: 10.1249/MSS.0b013e3182399d8f 22157773
35. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016 Jun;15(2):155–63. doi: 10.1016/j.jcm.2016.02.012 27330520
36. Boudreaux BD, Hebert EP, Hollander DB, Williams BM, Cormier CL, Naquin MR, et al. Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc. 2018 Mar;50(3):624–33. doi: 10.1249/MSS.0000000000001471 29189666
37. Ehrler F, Weber C, Lovis C. Influence of pedometer position on pedometer accuracy at various walking speeds: a comparative study. J Med Internet Res. 2016;18(10):e268–10. doi: 10.2196/jmir.5916 27713114
38. Chen M-D, Kuo C-C, Pellegrini CA, Hsu M-J. Accuracy of wristband activity monitors during ambulation and activities. Med Sci Sports Exerc. 2016 Oct;48(10):1942–9. doi: 10.1249/MSS.0000000000000984 27183123
39. Adamakis M. Preliminary validation study of consumer-level activity monitors and mobile applications for step counting under free living conditions. J Mob Technol Med. 2017 Apr;6(1):26–33.
40. Figueroa IA, Lucio ND, Gamez JL, Salazar VE, Funk MD. Validity of daily physical activity measurements of Fitbit Charge 2. Int J Exerc Sci. 2018;2(10):27.
41. Toth LP, Park S, Pittman WL, Sarisaltik D, Hibbing PR, Morton AL, et al. Validity of activity tracker step counts during walking, running, and activities of daily living. Transl J Am Coll Sports Med. 2018 Apr 1;3(7):52.
42. Šimůnek A, Dygrýn J, Jakubec L, Neuls F, Frömel K, Welk GJ. Validity of Garmin vívofit 1 and Garmin vívofit 3 for school-based physical activity monitoring. Pediatr Exerc Sci. 2019;31(1):130–6. doi: 10.1123/pes.2018-0019 30304974
43. Paul SS, Tiedemann A, Hassett LM, Ramsay E, Kirkham C, Chagpar S, et al. Validity of the Fitbit activity tracker for measuring steps in community-dwelling older adults. BMJ Open Sport Exerc Med. 2015;1(1):e000013. doi: 10.1136/bmjsem-2015-000013 27900119
44. John D, Morton A, Arguello D, Lyden K, Bassett D. “What is a step?” differences in how a step is detected among three popular activity monitors that have impacted physical activity research. Sensors (Basel). 2018 Apr;18(4):1206–15.
45. Hoodless DJ, Stainer K, Savic N, Batin P, Hawkins M, Cowley AJ. Reduced customary activity in chronic heart failure: assessment with a new shoe-mounted pedometer. Int J Cardiol. 1994 Jan;43(1):39–42. doi: 10.1016/0167-5273(94)90088-4 8175217
46. Walsh JT, Charlesworth A, Andrews R, Hawkins M, Cowley AJ. Relation of daily activity levels in patients with chronic heart failure to long-term prognosis. Am J Cardiol. 1997 May 15;79(10):1364–9. doi: 10.1016/s0002-9149(97)00141-0 9165159
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania