TCF4 induces enzalutamide resistance via neuroendocrine differentiation in prostate cancer
Autoři:
Geun Taek Lee aff001; Jeffrey A. Rosenfeld aff001; Won Tae Kim aff001; Young Suk Kwon aff001; Ganesh Palapattu aff003; Rohit Mehra aff003; Wun-Jae Kim aff002; Isaac Yi Kim aff001
Působiště autorů:
Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, and Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
aff001; Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
aff002; Department of Urology, University of Michigan, Ann Arbor, MI, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0213488
Souhrn
In treating patients with castration resistant prostate cancer (CRPC), enzalutamide, the second-generation androgen receptor (AR) antagonist, is an accepted standard of care. However, clinical benefits are limited to a median time of 4.8 months because resistance inevitably emerges. To determine the mechanism of treatment resistance, we carried out a RNA sequence analysis and found increased expression levels of neuroendocrine markers in the enzalutamide-resistant LNCaP human prostate cancer (CaP) cell line when compared to the parental cell line. Subsequent studies demonstrated that Transcription Factor-4 (TCF4), a transcription factor implicated in WNT signaling, mediated neuroendocrine differentiation (NED) in response to enzalutamide treatment and was elevated in the enzalutamide-resistant LNCaP. In addition, we observed that PTHrP mediated enzalutamide resistance in tissue culture and inducible TCF4 overexpression resulted in enzalutamide-resistance in a mouse xenograft model. Finally, small molecule inhibitors of TCF4 or PTHrP partially reversed enzalutamide resistance in CaP cells. When tissues obtained from men who died of metastatic CaP were examined, a positive correlation was found between the expression levels of TCF4 and PTHrP. Taken together, the current results indicate that TCF4 induces enzalutamide resistance via NED in CaP.
Klíčová slova:
Biology and life sciences – Genetics – Gene expression – Biochemistry – Research and analysis methods – Proteins – DNA-binding proteins – Molecular biology – Gene regulation – Molecular biology techniques – Medicine and health sciences – Microbiology – Transcription factors – Regulatory proteins – Pharmacology – Hormones – Urology – Oncology – Cancer treatment – Cancers and neoplasms – Microbial control – Antimicrobials – Antibiotics – Drugs – Molecular probe techniques – Surgical and invasive medical procedures – Androgens – Immunoblotting – Genitourinary tract tumors – Antimalarials – Prostate cancer – Prostate diseases – Reproductive system procedures – Castration – Doxycycline
Zdroje
1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: 10.3322/caac.21387 28055103.
2. Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med. 1989;321(7):419–24. Epub 1989/08/17. doi: 10.1056/NEJM198908173210702 2503724.
3. Schellhammer P, Sharifi R, Block N, Soloway M, Venner P, Patterson AL, et al. Maximal androgen blockade for patients with metastatic prostate cancer: outcome of a controlled trial of bicalutamide versus flutamide, each in combination with luteinizing hormone-releasing hormone analogue therapy. Casodex Combination Study Group. Urology. 1996;47(1A Suppl):54–60; discussion 80–4. Epub 1996/01/01. doi: 10.1016/s0090-4295(96)80010-0 8560679.
4. Debes JD, Tindall DJ. Mechanisms of androgen-refractory prostate cancer. N Engl J Med. 2004;351(15):1488–90. Epub 2004/10/08. doi: 10.1056/NEJMp048178 15470210.
5. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45. Epub 2002/03/20. doi: 10.1038/35094009 11900250.
6. Ha YS, Kim IY. Enzalutamide: looking back at its preclinical discovery. Expert Opin Drug Discov. 2014;9(7):837–45. Epub 2014/05/14. doi: 10.1517/17460441.2014.918947 24820058.
7. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. The New England journal of medicine. 2014;371(5):424–33. doi: 10.1056/NEJMoa1405095 24881730; PubMed Central PMCID: PMC4418931.
8. Shore ND, Chowdhury S, Villers A, Klotz L, Siemens DR, Phung D, et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. The Lancet Oncology. 2016;17(2):153–63. doi: 10.1016/S1470-2045(15)00518-5 26774508.
9. Suzman DL, Luber B, Schweizer MT, Nadal R, Antonarakis ES. Clinical activity of enzalutamide versus docetaxel in men with castration-resistant prostate cancer progressing after abiraterone. The Prostate. 2014;74(13):1278–85. doi: 10.1002/pros.22844 25053178; PubMed Central PMCID: PMC4144818.
10. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. Epub 2009/07/22. doi: 10.1016/j.devcel.2009.06.016 19619488; PubMed Central PMCID: PMC2861485.
11. Lee GT, Kang DI, Ha YS, Jung YS, Chung J, Min K, et al. Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction. Br J Cancer. 2014;110(6):1634–44. Epub 2014/02/13. doi: 10.1038/bjc.2014.23 24518599; PubMed Central PMCID: PMC3960605.
12. Syed Khaja AS, Helczynski L, Edsjo A, Ehrnstrom R, Lindgren A, Ulmert D, et al. Elevated level of Wnt5a protein in localized prostate cancer tissue is associated with better outcome. PLoS One. 2011;6(10):e26539. Epub 2011/11/01. doi: 10.1371/journal.pone.0026539 22039506; PubMed Central PMCID: PMC3200334.
13. Thiele S, Gobel A, Rachner TD, Fuessel S, Froehner M, Muders MH, et al. WNT5A has anti-prostate cancer effects in vitro and reduces tumor growth in the skeleton in vivo. J Bone Miner Res. 2015;30(3):471–80. Epub 2014/09/17. doi: 10.1002/jbmr.2362 25224731.
14. Siddique HR, Parray A, Tarapore RS, Wang L, Mukhtar H, Karnes RJ, et al. BMI1 polycomb group protein acts as a master switch for growth and death of tumor cells: regulates TCF4-transcriptional factor-induced BCL2 signaling. PLoS One. 2013;8(5):e60664. Epub 2013/05/15. doi: 10.1371/journal.pone.0060664 23671559; PubMed Central PMCID: PMC3645992.
15. Wei W, Chua MS, Grepper S, So S. Small molecule antagonists of Tcf4/beta-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer. 2010;126(10):2426–36. doi: 10.1002/ijc.24810 19662654.
16. Calcagni A, Kors L, Verschuren E, De Cegli R, Zampelli N, Nusco E, et al. Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling. Elife. 2016;5. doi: 10.7554/eLife.17047 27668431; PubMed Central PMCID: PMC5036965.
17. Wang Y, Lei R, Zhuang X, Zhang N, Pan H, Li G, et al. DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis. J Clin Invest. 2014;124(4):1646–59. doi: 10.1172/JCI71812 24590291; PubMed Central PMCID: PMC3973085.
18. Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M, et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 2004;64(24):9209–16. Epub 2004/12/18. doi: 10.1158/0008-5472.CAN-04-2442 15604294.
19. DaSilva J, Gioeli D, Weber MJ, Parsons SJ. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor. Cancer Res. 2009;69(18):7402–11. Epub 2009/08/27. doi: 10.1158/0008-5472.CAN-08-4687 19706771; PubMed Central PMCID: PMC2803023.
20. DaSilva JO, Amorino GP, Casarez EV, Pemberton B, Parsons SJ. Neuroendocrine-derived peptides promote prostate cancer cell survival through activation of IGF-1R signaling. Prostate. 2013;73(8):801–12. Epub 2012/11/30. doi: 10.1002/pros.22624 23192379; PubMed Central PMCID: PMC4085781.
21. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50. Epub 2005/04/15. doi: 10.1038/nature03319 15829953.
22. Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, et al. A Small-Molecule Antagonist of the beta-Catenin/TCF4 Interaction Blocks the Self-Renewal of Cancer Stem Cells and Suppresses Tumorigenesis. Cancer Res. 2016;76(4):891–901. Epub 2015/12/10. doi: 10.1158/0008-5472.CAN-15-1519 26645562.
23. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614–20. doi: 10.1038/nature08356 19759537.
24. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5(1):91–102. Epub 2004/01/30. 14749129.
25. Rosenblatt M, Caulfield MP, Fisher JE, Horiuchi N, McKee RL, Rodan SB, et al. A tumor-secreted protein associated with human hypercalcemia of malignancy. Biology and molecular biology. Ann N Y Acad Sci. 1988;548:137–45. Epub 1988/01/01. doi: 10.1111/j.1749-6632.1988.tb18800.x 2854715.
26. Suzuki K, Nishiyama T, Hara N, Yamana K, Takahashi K, Labrie F. Importance of the intracrine metabolism of adrenal androgens in androgen-dependent prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(3):301–6. Epub 2007/03/28. doi: 10.1038/sj.pcan.4500956 17387321.
27. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res. 2005;11(13):4653–7. Epub 2005/07/08. doi: 10.1158/1078-0432.CCR-05-0525 16000557.
28. Mohler JL, Gregory CW, Ford OH 3rd, Kim D, Weaver CM, Petrusz P, et al. The androgen axis in recurrent prostate cancer. Clin Cancer Res. 2004;10(2):440–8. Epub 2004/02/05. 14760063.
29. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97. Epub 2012/08/17. doi: 10.1056/NEJMoa1207506 22894553.
30. Ha YS, Goodin S, DiPaola RS, Kim IY. Enzalutamide for the treatment of castration-resistant prostate cancer. Drugs Today (Barc). 2013;49(1):7–13. Epub 2013/01/31. doi: 10.1358/dot.2013.49.1.1910724 23362491.
31. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–48. Epub 2012/12/12. doi: 10.1056/NEJMoa1209096 23228172; PubMed Central PMCID: PMC3683570.
32. Ramadan WH, Kabbara WK, Al Basiouni Al Masri HS. Enzalutamide for patients with metastatic castration-resistant prostate cancer. Onco Targets Ther. 2015;8:871–6. Epub 2015/05/07. doi: 10.2147/OTT.S80488 25945058; PubMed Central PMCID: PMC4407758.
33. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38. Epub 2014/09/04. doi: 10.1056/NEJMoa1315815 25184630; PubMed Central PMCID: PMC4201502.
34. Steinestel J, Luedeke M, Arndt A, Schnoeller TJ, Lennerz JK, Wurm C, et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget. 2015. doi: 10.18632/oncotarget.3925 25970787.
35. Efstathiou E, Titus M, Wen S, Hoang A, Karlou M, Ashe R, et al. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. European urology. 2015;67(1):53–60. doi: 10.1016/j.eururo.2014.05.005 24882673; PubMed Central PMCID: PMC4247811.
36. Prekovic S, van Royen ME, Voet AR, Geverts B, Houtman R, Melchers D, et al. The Effect of F877L and T878A Mutations on Androgen Receptor Response to Enzalutamide. Mol Cancer Ther. 2016;15(7):1702–12. doi: 10.1158/1535-7163.MCT-15-0892 27196756.
37. Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J, et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol. 2016;17:10. Epub 2016/01/28. doi: 10.1186/s13059-015-0864-1 26813233; PubMed Central PMCID: PMC4729137.
38. Aparicio A, Logothetis CJ, Maity SN. Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer discovery. 2011;1(6):466–8. doi: 10.1158/2159-8290.CD-11-0259 22586648; PubMed Central PMCID: PMC4133693.
39. Mosquera JM, Beltran H, Park K, MacDonald TY, Robinson BD, Tagawa ST, et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia. 2013;15(1):1–10. doi: 10.1593/neo.121550 23358695; PubMed Central PMCID: PMC3556934.
40. Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN, et al. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncotarget. 2015;6(1):234–42. Epub 2014/11/28. doi: 10.18632/oncotarget.2703 25428917; PubMed Central PMCID: PMC4381591.
41. Ramos RN, de Moraes CJ, Zelante B, Barbuto JA. What are the molecules involved in regulatory T-cells induction by dendritic cells in cancer? Clin Dev Immunol. 2013;2013:806025. doi: 10.1155/2013/806025 23762097; PubMed Central PMCID: PMC3674660.
42. Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research. 2014;20(4):890–903. doi: 10.1158/1078-0432.CCR-13-1982 24323898; PubMed Central PMCID: PMC3931005.
43. Maroto P, Solsona E, Gallardo E, Mellado B, Morote J, Arranz JA, et al. Expert opinion on first-line therapy in the treatment of castration-resistant prostate cancer. Crit Rev Oncol Hematol. 2016;100:127–36. Epub 2015/09/14. doi: 10.1016/j.critrevonc.2015.07.011 26363809.
44. Svensson C, Ceder J, Iglesias-Gato D, Chuan YC, Pang ST, Bjartell A, et al. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res. 2014;42(2):999–1015. Epub 2013/10/29. doi: 10.1093/nar/gkt921 24163104; PubMed Central PMCID: PMC3902919.
45. Dang Q, Li L, Xie H, He D, Chen J, Song W, et al. Anti-androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells—> androgen receptor (AR) —> miRNA32 signals. Mol Oncol. 2015;9(7):1241–51. Epub 2015/03/31. doi: 10.1016/j.molonc.2015.02.010 25817444.
46. Wang G, Wang J, Sadar MD. Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res. 2008;68(23):9918–27. Epub 2008/12/03. doi: 10.1158/0008-5472.CAN-08-1718 19047173; PubMed Central PMCID: PMC2654418.
47. Lee E, Ha S, Logan SK. Divergent Androgen Receptor and Beta-Catenin Signaling in Prostate Cancer Cells. PLoS One. 2015;10(10):e0141589. Epub 2015/10/29. doi: 10.1371/journal.pone.0141589 26509262; PubMed Central PMCID: PMC4624871.
48. Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol. 2008;32(1):65–71. Epub 2007/12/29. doi: 10.1097/PAS.0b013e318058a96b 18162772.
49. Wang H, Sun D, Ji P, Mohler J, Zhu L. An AR-Skp2 pathway for proliferation of androgen-dependent prostate-cancer cells. J Cell Sci. 2008;121(Pt 15):2578–87. Epub 2008/07/17. doi: 10.1242/jcs.030742 18628304; PubMed Central PMCID: PMC2729111.
50. Komiya A, Yasuda K, Watanabe A, Fujiuchi Y, Tsuzuki T, Fuse H. The prognostic significance of loss of the androgen receptor and neuroendocrine differentiation in prostate biopsy specimens among castration-resistant prostate cancer patients. Mol Clin Oncol. 2013;1(2):257–62. Epub 2014/03/22. doi: 10.3892/mco.2013.69 24649157; PubMed Central PMCID: PMC3915703.
51. Sainio M, Visakorpi T, Tolonen T, Ilvesaro J, Bova GS. Expression of neuroendocrine differentiation markers in lethal metastatic castration-resistant prostate cancer. Pathol Res Pract. 2018;214(6):848–56. Epub 2018/05/08. doi: 10.1016/j.prp.2018.04.015 29728311.
52. Komiya A, Suzuki H, Imamoto T, Kamiya N, Nihei N, Naya Y, et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol. 2009;16(1):37–44. Epub 2009/01/06. doi: 10.1111/j.1442-2042.2008.02175.x 19120524.
53. Yuan TC, Veeramani S, Lin MF. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer. 2007;14(3):531–47. Epub 2007/10/05. doi: 10.1677/ERC-07-0061 17914087.
54. Beltran H, Tagawa ST, Park K, MacDonald T, Milowsky MI, Mosquera JM, et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J Clin Oncol. 2012;30(36):e386–9. Epub 2012/11/22. doi: 10.1200/JCO.2011.41.5166 23169519.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania