Level Set method-based two-dimensional numerical model for simulation of nonuniform open-channel flow
Autoři:
Rui Xu aff001; Shihe Liu aff001
Působiště autorů:
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, P. R. China
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223167
Souhrn
The capture precision of the free surface of an open-channel with a water-air interface directly affects the calculation precision of flow field characteristics and general characteristics of the flow. Significant research effort has been devoted to Level Set since its creation, although the relevant research is mainly limited to bubble or droplet movement. In this paper, Level Set method is applied to a two-dimensional numerical simulation of open-channel turbulence, while a new numerical model is proposed and multispot synchronized experimental data are applied to the validation of numerical model. In addition, the model is used to study the flow field characteristics and general characteristics of open-channel flow, which have a water-level lowering curve. The study shows that (1) a semilogarithm zone of vertical distribution of longitudinal velocity is still present amid the transition of flow from nonuniform to uniform, and the depth-averaged velocity and wall shear stress increase along the flowing path. (2) both the energy loss coefficient and roughness coefficient of the flow at nonuniform flow region are greater than the respective values at uniform flow region, and the magnitude of the deviation is relevant to the magnitude of the flow deviation from uniform flow stage.
Klíčová slova:
Simulation and modeling – Motion – Velocity – Shear stresses – Turbulence – Fluid flow – Flow field – Kinetics
Zdroje
1. Castro-Orgaz O. Steady free-surface flow in porous media: generalized Dupuit-Fawer equations. J Hydraul Res. 2011; 49(1): 55–63. https://doi.org/10.1080/00221686.2010.526758.
2. Nezu I, Nakagawa H. TURBULENCE MEASUREMENTS IN UNSTEADY FREE-SURFACE FLOWS. Flow Measurement and Instrumentation. 1995; 6(1): 49–59. https://doi.org/10.1016/0955-5986(95)93458-7.
3. Liu Q, Fang G-h, Sun H-b, Wu X-w. Joint optimization scheduling for water conservancy projects in complex river networks. Water Science and Engineering. 2017; 10(1): 43–52. https://doi.org/10.1016/j.wse.2017.03.008.
4. Sennes G, Castelle B, Bertin X, Mirfenderesk H, Tomlinson RB. Modelling of the Gold Coast Seaway tidal inlet, Australia. Journal of Coastal Research. 2007: 1086–1091.
5. Nezu I, Sanjou M. PIV and PTV measurements in hydro-sciences with focus on turbulent open-channel flows. Journal of Hydro-Environment Research. 2011; 5(4): 215–230. https://doi.org/10.1016/j.jher.2011.05.004.
6. Song T, Chiew YM. Turbulence measurement in nonuniform open-channel flow using acoustic Doppler velocimeter (ADV). Journal of Engineering Mechanics-Asce. 2001; 127(3): 219–232. https://doi.org/10.1061/(asce)0733-9399(2001)127:3(219).
7. Cardoso AH, Gust G, Graf WH. STEADY GRADUALLY ACCELERATING FLOW IN A SMOOTH OPEN CHANNEL. J Hydraul Res. 1991; 29(4): 525–543. https://doi.org/10.1080/00221689109498972.
8. Shiono K, Knight DW. TURBULENT OPEN-CHANNEL FLOWS WITH VARIABLE DEPTH ACROSS THE CHANNEL. Journal of Fluid Mechanics. 1991; 222: 617–646. https://doi.org/10.1017/s0022112091001246.
9. Kamath A, Fleit G, Bihs H. Investigation of Free Surface Turbulence Damping in RANS Simulations for Complex Free Surface Flows. Water. 2019; 11(3). https://doi.org/10.3390/w11030456 WOS:000464547300002.
10. Chandran K, Saha AK, Mohapatra PK. Simulation of free surface flows with non-hydrostatic pressure distribution. Sadhana-Academy Proceedings in Engineering Sciences. 2019; 44(1). https://doi.org/10.1007/s12046-018-1000-1.
11. Khosronejad A, Arabi MG, Angelidis D, Bagherizadeh E, Flora K, Farhadzadeh A. Comparative Hydrodynamic Study of Rigid-Lid and Level-Set Methods for LES of Open-Channel Flow. Journal of Hydraulic Engineering. 2019; 145(1). https://doi.org/10.1061/(asce)hy.1943-7900.0001546.
12. Violeau D, Issa R. Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. International Journal for Numerical Methods in Fluids. 2007; 53(2): 277–304. https://doi.org/10.1002/fld.1292.
13. Dey S. Free overall in open channels: state-of-the-art review. Flow Measurement and Instrumentation. 2002; 13(5–6): 247–264. https://doi.org/10.1016/s0955-5986(02)00055-9.
14. McSherry RJ, Chua KV, Stoesser T. Large eddy simulation of free-surface flows. Journal of Hydrodynamics. 2017; 29(1): 1–12. https://doi.org/10.1016/s1001-6058(16)60712-6.
15. Pan D, Chang CH. The capturing of free surfaces in incompressible multi-fluid flows. International Journal for Numerical Methods in Fluids. 2000; 33(2): 203–222. https://doi.org/10.1002/(sici)1097-0363(20000530)33:2<203::Aid-fld9>3.0.Co;2-f.
16. Qian L, Causon D, Mingham C. Comments on 'An improved free surface capturing method based on Cartesian cut cell mesh for water-entry and -exit problems'. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences. 2012; 468(2138): 305–309. https://doi.org/10.1098/rspa.2011.0379.
17. Kelecy FJ, Pletcher RH. The development of a free surface capturing approach for multidimensional free surface flows in closed containers. Journal of Computational Physics. 1997; 138(2): 939–980. https://doi.org/10.1006/jcph.1997.5847.
18. Ramamurthy AS, Qu J, Vo D. VOF model for simulation of a free overfall in trapezoidal channels. Journal of Irrigation and Drainage Engineering. 2006; 132(4): 425–428. https://doi.org/10.1061/(asce)0733-9437(2006)132:4(425).
19. Shirani E, Ghadiri F, Ahmadi A. Modeling and Simulation of Interfacial Turbulent Flows. Journal of Applied Fluid Mechanics. 2011; 4(2): 43–49.
20. Osher S, Sethian JA. FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED—ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS. Journal of Computational Physics. 1988; 79(1): 12–49. https://doi.org/10.1016/0021-9991(88)90002-2.
21. Hirt CW, Nichols BD. VOLUME OF FLUID (VOF) METHOD FOR THE DYNAMICS OF FREE BOUNDARIES. Journal of Computational Physics. 1981; 39(1): 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
22. Albadawi A, Delaure Y, Donoghue DB, Robinson A, Murray DB, Iop. Numerical investigation of volume of fluid and level set interface capturing methods for bubble growth and detachment. 6th European Thermal Sciences Conference. Journal of Physics Conference Series. 3952012.
23. Bilger C, Aboukhedr M, Vogiatzaki K, Cant RS. Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods. Journal of Computational Physics. 2017; 345: 665–686. https://doi.org/10.1016/j.jcp.2017.05.044.
24. Sussman M, Smereka P, Osher S. A LEVEL SET APPROACH FOR COMPUTING SOLUTIONS TO INCOMPRESSIBLE 2-PHASE FLOW. Journal of Computational Physics. 1994; 114(1): 146–159. https://doi.org/10.1006/jcph.1994.1155.
25. Ubbink O, Issa RI. A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of Computational Physics. 1999; 153(1): 26–50. https://doi.org/10.1006/jcph.1999.6276.
26. Kang M, Merriman B, Osher S. Numerical simulations for the motion of soap bubbles using level set methods. Computers & Fluids. 2008; 37(5): 524–535. https://doi.org/10.1016/j.compfluid.2007.07.002.
27. Bu L, Zhao J. Numerical simulation of the water bubble rising in a liquid column using the combination of level set and moving mesh methods in the collocated grids. International Journal of Thermal Sciences. 2012; 59: 1–8. https://doi.org/10.1016/j.ijthermalsci.2012.04.011.
28. Sussman M, Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML. An adaptive level set approach for incompressible two-phase flows. Journal of Computational Physics. 1999; 148(1): 81–124. https://doi.org/10.1006/jcph.1998.6106.
29. Nikitin K, Vassilevski Y. Free surface flow modelling on dynamically refined hexahedral meshes. Russian Journal of Numerical Analysis and Mathematical Modelling. 2008; 23(5): 469–485. https://doi.org/10.1515/rjnamm.2008.027.
30. Zhang Y, Zou Q, Greaves D. Numerical simulation of free-surface flow using the level-set method with global mass correction. International Journal for Numerical Methods in Fluids. 2010; 63(6): 651–680. https://doi.org/10.1002/fld.2090.
31. Versteeg HK, Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 1st ed. New York: Prentice Hall Press;1995.
32. Pantankar SV. Numerical Heat Transfer and Fluid Flow. 1st ed. Taylor & Francis Press;1980.
33. Pantankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in thress-dimensional parabolic flows. Int.J. Heat Mass Transfer. 1972; 15(10): 1787–1806. https://doi.org/10.1016/0017-9310(72)90054-3.
34. Hayase T, Humphrey JAC, Greif R. A CONSISTENTLY FORMULATED QUICK SCHEME FOR FAST AND STABLE CONVERGENCE USING FINITE-VOLUME ITERATIVE CALCULATION PROCEDURES. Journal of Computational Physics. 1992; 98(1): 108–118. https://doi.org/10.1016/0021-9991(92)90177-z.
35. Shu CW, Osher S. EFFICIENT IMPLEMENTATION OF ESSENTIALLY NON-OSCILLATORY SHOCK-CAPTURING SCHEMES. Journal of Computational Physics. 1988; 77(2): 439–471. https://doi.org/10.1016/0021-9991(88)90177-5.
36. Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics. 1996; 126(1): 202–228. https://doi.org/10.1006/jcph.1996.0130.
37. Patel VC, Rodi W, Scheuerer G. TURBULENCE MODELS FOR NEAR-WALL AND LOW REYNOLDS-NUMBER FLOWS—A REVIEW. Aiaa Journal. 1985; 23(9): 1308–1319. https://doi.org/10.2514/3.9086.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania