#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Post-translational S-glutathionylation of cofilin increases actin cycling during cocaine seeking


Autoři: Anna Kruyer aff001;  Lauren E. Ball aff002;  Danyelle M. Townsend aff003;  Peter W. Kalivas aff001;  Joachim D. Uys aff002
Působiště autorů: Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States of America aff001;  Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States of America aff002;  Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223037

Souhrn

Neuronal defense against oxidative damage is mediated primarily by the glutathione redox system. Traditionally considered a mechanism to protect proteins from irreversible oxidation, mounting evidence supports a role for protein S-glutathionylation in cell signaling in response to changes in intracellular redox status. Here we determined the specific sites on the actin binding protein cofilin that undergo S-glutathionylation. In addition, we show that S-glutathionylation of cofilin reduces its capacity to depolymerize F-actin. We further describe an assay to determine the S-glutathionylation of target proteins in brain tissue from behaving rodents. Using this technique, we show that cofilin in the rat nucleus accumbens undergoes S-glutathionylation during 15-minutes of cued cocaine seeking in the absence of cocaine. Our findings demonstrate that cofilin S-glutathionylation is increased in response to cocaine-associated cues and that increased cofilin S-glutathionylation reduces cofilin-dependent depolymerization of F-actin. Thus, S-glutathionylation of cofilin may serve to regulate actin cycling in response to drug-conditioned cues.

Klíčová slova:

Cysteine – Database searching – Glutathione – Oxidation-reduction reactions – Nucleus accumbens – Neuronal dendrites – Cocaine – Actins


Zdroje

1. Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;295(4):C849–68. doi: 10.1152/ajpcell.00283.2008 18684987; PubMed Central PMCID: PMC2575825.

2. Miseta A, Csutora P. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol. 2000;17(8):1232–9. doi: 10.1093/oxfordjournals.molbev.a026406 10908643.

3. Meister A. On the discovery of glutathione. Trends Biochem Sci. 1988;13(5):185–8. 3076280. doi: 10.1016/0968-0004(88)90148-x 3076280

4. Xiong Y, Uys JD, Tew KD, Townsend DM. S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal. 2011;15(1):233–70. doi: 10.1089/ars.2010.3540 21235352; PubMed Central PMCID: PMC3110090.

5. Cole SP, Deeley RG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci. 2006;27(8):438–46. doi: 10.1016/j.tips.2006.06.008 16820223.

6. Womersley JS, Townsend DM, Kalivas PW, Uys JD. Targeting redox regulation to treat substance use disorder using N-acetylcysteine. Eur J Neurosci. 2018. doi: 10.1111/ejn.14130 30144182.

7. Womersley JS, Uys JD. S-Glutathionylation and Redox Protein Signaling in Drug Addiction. Prog Mol Biol Transl Sci. 2016;137:87–121. doi: 10.1016/bs.pmbts.2015.10.001 26809999; PubMed Central PMCID: PMC4881420.

8. Uys JD, Mulholland PJ, Townsend DM. Glutathione and redox signaling in substance abuse. Biomed Pharmacother. 2014;68(6):799–807. doi: 10.1016/j.biopha.2014.06.001 25027386; PubMed Central PMCID: PMC4455547.

9. Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol. 2006;71(5):551–64. doi: 10.1016/j.bcp.2005.10.044 16337153

10. Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron. 2003;38(3):447–60. doi: 10.1016/s0896-6273(03)00206-x 12741991.

11. Star EN, Kwiatkowski DJ, Murthy VN. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci. 2002;5(3):239–46. doi: 10.1038/nn811 11850630.

12. Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res. 2013;112(2):382–92. doi: 10.1161/CIRCRESAHA.112.268680 23329793; PubMed Central PMCID: PMC4340704.

13. Hinshaw DB, Burger JM, Beals TF, Armstrong BC, Hyslop PA. Actin polymerization in cellular oxidant injury. Arch Biochem Biophys. 1991;288(2):311–6. doi: 10.1016/0003-9861(91)90200-3 1898028.

14. Ono S. Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments. Biochemistry. 2003;42(46):13363–70. doi: 10.1021/bi034600x 14621980.

15. Ressad F, Didry D, Egile C, Pantaloni D, Carlier MF. Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and ARP2/3 complex. J Biol Chem. 1999;274(30):20970–6. doi: 10.1074/jbc.274.30.20970 10409644.

16. Blanchoin L, Robinson RC, Choe S, Pollard TD. Phosphorylation of Acanthamoeba actophorin (ADF/cofilin) blocks interaction with actin without a change in atomic structure. J Mol Biol. 2000;295(2):203–11. doi: 10.1006/jmbi.1999.3336 10623520.

17. Shi Y, Pontrello CG, DeFea KA, Reichardt LF, Ethell IM. Focal adhesion kinase acts downstream of EphB receptors to maintain mature dendritic spines by regulating cofilin activity. J Neurosci. 2009;29(25):8129–42. doi: 10.1523/JNEUROSCI.4681-08.2009 19553453; PubMed Central PMCID: PMC2819391.

18. Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci U S A. 2002;99(6):3505–10. doi: 10.1073/pnas.052592699 11904414; PubMed Central PMCID: PMC122553.

19. Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith AC, et al. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev. 2016;68(3):816–71. doi: 10.1124/pr.116.012484 27363441; PubMed Central PMCID: PMC4931870.

20. Knackstedt LA, Melendez RI, Kalivas PW. Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry. 2010;67(1):81–4. doi: 10.1016/j.biopsych.2009.07.018 PubMed Central PMCID: PMC2795043. 19717140

21. Aesif SW, Janssen-Heininger YM, Reynaert NL. Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ. Methods Enzymol. 2010;474:289–96. doi: 10.1016/S0076-6879(10)74017-9 20609917; PubMed Central PMCID: PMC3113509.

22. Heffner TG, Hartman JA, Seiden LS. A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav. 1980;13(3):453–6. doi: 10.1016/0091-3057(80)90254-3 7422701.

23. Guo J, Gaffrey MJ, Su D, Liu T, Camp DG, 2nd, Smith RD, et al. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat Protoc. 2014;9(1):64–75. doi: 10.1038/nprot.2013.161 24336471; PubMed Central PMCID: PMC4038159.

24. Townsend DM, Manevich Y, He L, Xiong Y, Bowers RR, Jr., Hutchens S, et al. Nitrosative stress-induced s-glutathionylation of protein disulfide isomerase leads to activation of the unfolded protein response. Cancer Res. 2009;69(19):7626–34. doi: 10.1158/0008-5472.CAN-09-0493 19773442; PubMed Central PMCID: PMC2756322.

25. Uys JDC-W, S.; Ball, L.E., editor Improvements in the Mass Spectrometric Detection of S-Glutathionylated Peptides Using Multiple Fragmentation Approaches. Proceedings of the 61st ASMS Conference on Mass Spectrometry and Allied Topics; 2013; Minneapolis, Minnesota.

26. Hedges DM, Obray JD, Yorgason JT, Jang EY, Weerasekara VK, Uys JD, et al. Methamphetamine Induces Dopamine Release in the Nucleus Accumbens Through a Sigma Receptor-Mediated Pathway. Neuropsychopharmacology. 2018;43(6):1405–14. doi: 10.1038/npp.2017.291 29185481; PubMed Central PMCID: PMC5916361.

27. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. doi: 10.1038/nbt.1511 19029910.

28. Baker PR, Medzihradszky KF, Chalkley RJ. Improving software performance for peptide electron transfer dissociation data analysis by implementation of charge state- and sequence-dependent scoring. Mol Cell Proteomics. 2010;9(9):1795–803. doi: 10.1074/mcp.M110.000422 20513802; PubMed Central PMCID: PMC2938109.

29. Prudent R, Demoncheaux N, Diemer H, Collin-Faure V, Kapur R, Paublant F, et al. A quantitative proteomic analysis of cofilin phosphorylation in myeloid cells and its modulation using the LIM kinase inhibitor Pyr1. PLoS One. 2018;13(12):e0208979. doi: 10.1371/journal.pone.0208979 30550596; PubMed Central PMCID: PMC6294390.

30. Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 2010;20(4):187–95. doi: 10.1016/j.tcb.2010.01.001 20133134; PubMed Central PMCID: PMC2849908.

31. Sumi T, Matsumoto K, Takai Y, Nakamura T. Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J Cell Biol. 1999;147(7):1519–32. doi: 10.1083/jcb.147.7.1519 10613909; PubMed Central PMCID: PMC2174243.

32. Toda S, Shen HW, Peters J, Cagle S, Kalivas PW. Cocaine increases actin cycling: effects in the reinstatement model of drug seeking. J Neurosci. 2006;26(5):1579–87. doi: 10.1523/JNEUROSCI.4132-05.2006 16452681.

33. Esparza MA, Bollati F, Garcia-Keller C, Virgolini MB, Lopez LM, Brusco A, et al. Stress-induced sensitization to cocaine: actin cytoskeleton remodeling within mesocorticolimbic nuclei. Eur J Neurosci. 2012;36(8):3103–17. doi: 10.1111/j.1460-9568.2012.08239.x 22882295; PubMed Central PMCID: PMC4346257.

34. Dietz DM, Sun H, Lobo MK, Cahill ME, Chadwick B, Gao V, et al. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat Neurosci. 2012;15(6):891–6. doi: 10.1038/nn.3094 22522400; PubMed Central PMCID: PMC3565539.

35. Floresco SB. The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol. 2015;66:25–52. doi: 10.1146/annurev-psych-010213-115159 25251489.

36. Uys JD, Knackstedt L, Hurt P, Tew KD, Manevich Y, Hutchens S, et al. Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity. Neuropsychopharmacology. 2011;36(12):2551–60. doi: 10.1038/npp.2011.143 21796101; PubMed Central PMCID: PMC3194081.

37. Klegeris A, Korkina LG, Greenfield SA. Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions. Free Radic Biol Med. 1995;18(2):215–22. doi: 10.1016/0891-5849(94)00141-6 7744304.

38. Guindalini C, O'Gara C, Laranjeira R, Collier D, Castelo A, Vallada H, et al. A GSTP1 functional variant associated with cocaine dependence in a Brazilian population. Pharmacogenet Genomics. 2005;15(12):891–3. 16272961.

39. Hashimoto T, Hashimoto K, Matsuzawa D, Shimizu E, Sekine Y, Inada T, et al. A functional glutathione S-transferase P1 gene polymorphism is associated with methamphetamine-induced psychosis in Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2005;135B(1):5–9. doi: 10.1002/ajmg.b.30164 15729709.

40. Roberts-Wolfe D, Bobadilla AC, Heinsbroek JA, Neuhofer D, Kalivas PW. Drug Refraining and Seeking Potentiate Synapses on Distinct Populations of Accumbens Medium Spiny Neurons. J Neurosci. 2018;38(32):7100–7. doi: 10.1523/JNEUROSCI.0791-18.2018 29976626; PubMed Central PMCID: PMC6083453.

41. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci. 2000;20(19):7489–95. 11007908.

42. Smith ACW, Scofield MD, Heinsbroek JA, Gipson CD, Neuhofer D, Roberts-Wolfe DJ, et al. Accumbens nNOS Interneurons Regulate Cocaine Relapse. J Neurosci. 2017;37(4):742–56. doi: 10.1523/JNEUROSCI.2673-16.2016 28123012; PubMed Central PMCID: PMC5296777.

43. Baker DA, Shen H, Kalivas PW. Cystine/glutamate exchange serves as the source for extracellular glutamate: modifications by repeated cocaine administration. Amino Acids. 2002;23(1–3):161–2. doi: 10.1007/s00726-001-0122-6 12373531.

44. Dringen R, Kussmaul L, Gutterer JM, Hirrlinger J, Hamprecht B. The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J Neurochem. 1999;72(6):2523–30. doi: 10.1046/j.1471-4159.1999.0722523.x 10349863.

45. Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol. 2010;189(4):619–29. doi: 10.1083/jcb.201003008 20457765; PubMed Central PMCID: PMC2872912.

46. Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013;77(5):867–72. doi: 10.1016/j.neuron.2013.01.005 23473317; PubMed Central PMCID: PMC3619421.

47. Zhou Q, Xiao M, Nicoll RA. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc Natl Acad Sci U S A. 2001;98(3):1261–6. doi: 10.1073/pnas.031573798 11158627; PubMed Central PMCID: PMC14742.

48. Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry. 2011;16(10):974–86. doi: 10.1038/mp.2011.46 21519339; PubMed Central PMCID: PMC3192324.

49. Madayag A, Lobner D, Kau KS, Mantsch JR, Abdulhameed O, Hearing M, et al. Repeated N-acetylcysteine administration alters plasticity-dependent effects of cocaine. J Neurosci. 2007;27(51):13968–76. doi: 10.1523/JNEUROSCI.2808-07.2007 18094234; PubMed Central PMCID: PMC2996827.

50. Ducret E, Puaud M, Lacoste J, Belin-Rauscent A, Fouyssac M, Dugast E, et al. N-acetylcysteine Facilitates Self-Imposed Abstinence After Escalation of Cocaine Intake. Biol Psychiatry. 2016;80(3):226–34. doi: 10.1016/j.biopsych.2015.09.019 26592462; PubMed Central PMCID: PMC4954758.

51. Baillie TA, Davis MR. Mass spectrometry in the analysis of glutathione conjugates. Biol Mass Spectrom. 1993;22(6):319–25. doi: 10.1002/bms.1200220602 8329460.

52. Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, et al. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J Biol Chem. 2008;283(36):24801–15. doi: 10.1074/jbc.M803432200 18611857; PubMed Central PMCID: PMC2529008.

53. Wu SL, Jiang H, Hancock WS, Karger BL. Identification of the unpaired cysteine status and complete mapping of the 17 disulfides of recombinant tissue plasminogen activator using LC-MS with electron transfer dissociation/collision induced dissociation. Anal Chem. 2010;82(12):5296–303. doi: 10.1021/ac100766r 20481521; PubMed Central PMCID: PMC2890214.

54. Chou CC, Chiang BY, Lin JC, Pan KT, Lin CH, Khoo KH. Characteristic tandem mass spectral features under various collision chemistries for site-specific identification of protein S-glutathionylation. J Am Soc Mass Spectrom. 2015;26(1):120–32. doi: 10.1007/s13361-014-1014-9 25374333.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#