Targeted in-vitro-stimulation reveals highly proliferative multi-virus-specific human central memory T cells as candidates for prophylactic T cell therapy
Autoři:
Benjamin Faist aff001; Fabian Schlott aff001; Christian Stemberger aff003; Kevin M. Dennehy aff004; Angela Krackhardt aff006; Mareike Verbeek aff006; Götz U. Grigoleit aff007; Matthias Schiemann aff001; Dieter Hoffmann aff002; Andrea Dick aff009; Klaus Martin aff010; Martin Hildebrandt aff011; Dirk H. Busch aff001; Michael Neuenhahn aff001
Působiště autorů:
Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
aff001; German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
aff002; Juno Therapeutics, Munich, Germany
aff003; German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
aff004; Institute for Medical Virology, University Hospital Tübingen, Tübingen, Germany
aff005; Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
aff006; Department of Internal Medicine II, University of Würzburg, Wuerzburg, Germany
aff007; Institute for Virology, Technische Universität München, Munich, Germany
aff008; Department of Transfusion Medicine and Haemostaseology, Ludwig-Maximilians-Universität München, Munich, Germany
aff009; Institute of Anaesthesiology, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Munich, Germany
aff010; TUM Cells Interdisciplinary Center for Cellular Therapies, Munich, Germany
aff011
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223258
Souhrn
Adoptive T cell therapy (ACT) has become a treatment option for viral reactivations in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). Animal models have shown that pathogen-specific central memory T cells (TCM) are protective even at low numbers and show long-term survival, extensive proliferation and high plasticity after adoptive transfer. Concomitantly, our own recent clinical data demonstrate that minimal doses of purified (not in-vitro- expanded) human CMV epitope-specific T cells can be sufficient to clear viremia. However, it remains to be determined if human virus-specific TCM show the same promising features for ACT as their murine counterparts. Using a peptide specific proliferation assay (PSPA) we studied the human Adenovirus- (AdV), Cytomegalovirus- (CMV) and Epstein-Barr virus- (EBV) specific TCM repertoires and determined their functional and proliferative capacities in vitro. TCM products were generated from buffy coats, as well as from non-mobilized and mobilized apheresis products either by flow cytometry-based cell sorting or magnetic cell enrichment using reversible Fab-Streptamers. Adjusted to virus serology and human leukocyte antigen (HLA)-typing, donor samples were analyzed with MHC multimer- and intracellular cytokine staining (ICS) before and after PSPA. TCM cultures showed strong proliferation of a plethora of functional virus-specific T cells. Using PSPA, we could unveil tiniest virus epitope-specific TCM populations, which had remained undetectable in conventional ex-vivo-staining. Furthermore, we could confirm these characteristics for mobilized apheresis- and GMP-grade Fab-Streptamer-purified TCM products. Consequently, we conclude that TCM bare high potential for prophylactic low-dose ACT. In addition, use of Fab-Streptamer-purified TCM allows circumventing regulatory restrictions typically found in conventional ACT product generation. These GMP-compatible TCM can now be used as a broad-spectrum antiviral T cell prophylaxis in alloHSCT patients and PSPA is going to be an indispensable tool for advanced TCM characterization during concomitant immune monitoring.
Klíčová slova:
Cell differentiation – Stem cells – T cells – Cytotoxic T cells – Cell staining – Prophylaxis – Leukapheresis – Memory T cells
Zdroje
1. Passweg JR, Baldomero H, Basak GW, Chabannon C, Corbacioglu S, Duarte R, et al. The EBMT activity survey report 2017: a focus on allogeneic HCT for nonmalignant indications and on the use of non-HCT cell therapies. Bone Marrow Transplant. 2019. doi: 10.1038/s41409-019-0465-9 30728439
2. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354: 1813–1826. doi: 10.1056/NEJMra052638 16641398
3. Cho C, Perales M-A. Expanding Therapeutic Opportunities for Hematopoietic Stem Cell Transplantation: T Cell Depletion as a Model for the Targeted Allograft. Annu Rev Med. 2019;70: 381–393. doi: 10.1146/annurev-med-120617-041210 30359171
4. González-Vicent M, Verna M, Pochon C, Chandak A, Vainorius E, Brundage T, et al. Current practices in the management of adenovirus infection in allogeneic hematopoietic stem cell transplant recipients in Europe: The AdVance study. Eur J Haematol. 2019;102: 210–217. doi: 10.1111/ejh.13194 30418684
5. Rafailidis PI, Mavros MN, Kapaskelis A, Falagas ME. Antiviral treatment for severe EBV infections in apparently immunocompetent patients. J Clin Virol. 2010;49: 151–157. doi: 10.1016/j.jcv.2010.07.008 20739216
6. Lowance D, Neumayer HH, Legendre CM, Squifflet JP, Kovarik J, Brennan PJ, et al. Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation. International Valacyclovir Cytomegalovirus Prophylaxis Transplantation Study Group. N Engl J Med. 1999;340: 1462–1470. doi: 10.1056/NEJM199905133401903 10320384
7. Schmidt GM, Horak DA, Niland JC, Duncan SR, Forman SJ, Zaia JA. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants; The City of Hope-Stanford-Syntex CMV Study Group. N Engl J Med. 1991;324: 1005–1011. doi: 10.1056/NEJM199104113241501 1848679
8. Goodrich JM, Mori M, Gleaves CA, Mond Du C, Cays M, Ebeling DF, et al. Early treatment with ganciclovir to prevent cytomegalovirus disease after allogeneic bone marrow transplantation. N Engl J Med. 1991;325: 1601–1607. doi: 10.1056/NEJM199112053252303 1658652
9. Cherrier L, Nasar A, Goodlet KJ, Nailor MD, Tokman S, Chou S. Emergence of letermovir resistance in a lung transplant recipient with ganciclovir-resistant cytomegalovirus infection. Am J Transplant. 2018;18: 3060–3064. doi: 10.1111/ajt.15135 30286286
10. Chaer El F, Shah DP, Chemaly RF. How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood. 2016;128: 2624–2636. doi: 10.1182/blood-2016-06-688432 27760756
11. Bowman LJ, Melaragno JI, Brennan DC. Letermovir for the management of cytomegalovirus infection. Expert Opin Investig Drugs. 2017;26: 235–241. doi: 10.1080/13543784.2017.1274733 27998189
12. Marty FM, Ljungman P, Chemaly RF, Maertens J, Dadwal SS, Duarte RF, et al. Letermovir Prophylaxis for Cytomegalovirus in Hematopoietic-Cell Transplantation. N Engl J Med. 2017;377: 2433–2444. doi: 10.1056/NEJMoa1706640 29211658
13. Marty FM, Ljungman P, Papanicolaou GA, Winston DJ, Chemaly RF, Strasfeld L, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2011;11: 284–292. doi: 10.1016/S1473-3099(11)70024-X 21414843
14. Marty FM, Winston DJ, Chemaly RF, Mullane KM, Shore TB, Papanicolaou GA, et al. A Randomized, Double-Blind, Placebo-Controlled Phase 3 Trial of Oral Brincidofovir for Cytomegalovirus Prophylaxis in Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2019;25: 369–381. doi: 10.1016/j.bbmt.2018.09.038 30292744
15. Boeckh M, Leisenring W, Riddell SR, Bowden RA, Huang M-L, Myerson D, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood. 2003;101: 407–414. doi: 10.1182/blood-2002-03-0993 12393659
16. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333: 1038–1044. doi: 10.1056/NEJM199510193331603 7675046
17. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202: 379–386. doi: 10.1084/jem.20040613 16061727
18. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116: 4360–4367. doi: 10.1182/blood-2010-01-262089 20625005
19. Stemberger C, Graef P, Odendahl M, Albrecht J, Dössinger G, Anderl F, et al. Lowest numbers of primary CD8(+) T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood. 2014;124: 628–637. doi: 10.1182/blood-2013-12-547349 24855206
20. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12: 1160–1166. doi: 10.1038/nm1475 16998485
21. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med. 1996;2: 551–555. doi: 10.1038/nm0596-551 8616714
22. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110: 1123–1131. doi: 10.1182/blood-2006-12-063008 17468341
23. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345: 9–13. doi: 10.1016/s0140-6736(95)91150-2 7799740
24. Macesic N, Langsford D, Nicholls K, Hughes P, Gottlieb DJ, Clancy L, et al. Adoptive T cell immunotherapy for treatment of ganciclovir-resistant cytomegalovirus disease in a renal transplant recipient. Am J Transplant. 2015;15: 827–832. doi: 10.1111/ajt.13023 25648555
25. Papadopoulou A, Gerdemann U, Katari UL, Tzannou I, Liu H, Martinez C, et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med. 2014;6: 242ra83. doi: 10.1126/scitranslmed.3008825 24964991
26. Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion. 2011;51: 591–599. doi: 10.1111/j.1537-2995.2010.02940.x 21133926
27. Knabel M, Franz TJ, Schiemann M, Wulf A, Villmow B, Schmidt B, et al. Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med. 2002;8: 631–637. doi: 10.1038/nm0602-631 12042816
28. Dössinger G, Bunse M, Bet J, Albrecht J, Paszkiewicz PJ, Weissbrich B, et al. MHC multimer-guided and cell culture-independent isolation of functional T cell receptors from single cells facilitates TCR identification for immunotherapy. PLoS ONE. 2013;8: e61384. doi: 10.1371/journal.pone.0061384 23637823
29. Neuenhahn M, Albrecht J, Odendahl M, Schlott F, Dössinger G, Schiemann M, et al. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after alloHSCT. Leukemia. 2017. doi: 10.1038/leu.2017.16 28090089
30. Odendahl M, Grigoleit GU, Bönig H, Neuenhahn M, Albrecht J, Anderl F, et al. Clinical-scale isolation of “minimally manipulated” cytomegalovirus-specific donor lymphocytes for the treatment of refractory cytomegalovirus disease. Cytotherapy. 2014;16: 1245–1256. doi: 10.1016/j.jcyt.2014.05.023 25108651
31. Busch DH, Fräßle SP, Sommermeyer D, Buchholz VR, Riddell SR. Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol. 2016;28: 28–34. doi: 10.1016/j.smim.2016.02.001 26976826
32. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118: 294–305. doi: 10.1172/JCI32103 18060041
33. Graef P, Buchholz VR, Stemberger C, Flossdorf M, Henkel L, Schiemann M, et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8(+) central memory T cells. Immunity. 2014;41: 116–126. doi: 10.1016/j.immuni.2014.05.018 25035956
34. Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, et al. Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination. Sci Transl Med. 2015;7: 282ra48. doi: 10.1126/scitranslmed.aaa3700 25855494
35. Oliveira G, Ruggiero E, Stanghellini MTL, Cieri N, D'Agostino M, Fronza R, et al. Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Sci Transl Med. 2015;7: 317ra198. doi: 10.1126/scitranslmed.aac8265 26659572
36. Bleakley M, Otterud BE, Richardt JL, Mollerup AD, Hudecek M, Nishida T, et al. Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood. 2010;115: 4923–4933. doi: 10.1182/blood-2009-12-260539 20203263
37. Bleakley M, Heimfeld S, Jones LA, Turtle C, Krause D, Riddell SR, et al. Engineering Human Peripheral Blood Stem Cell Grafts that Are Depleted of Naïve T Cells and Retain Functional Pathogen-Specific Memory T Cells. Biol Blood Marrow Transplant. 2014;20: 705–716. doi: 10.1016/j.bbmt.2014.01.032 24525279
38. Stemberger C, Dreher S, Tschulik C, Piossek C, Bet J, Yamamoto TN, et al. Novel serial positive enrichment technology enables clinical multiparameter cell sorting. PLoS ONE. 2012;7: e35798. doi: 10.1371/journal.pone.0035798 22545138
39. Schlott F, Steubl D, Hoffmann D, Matevossian E, Lutz J, Heemann U, et al. Primary Cytomegalovirus Infection in Seronegative Kidney Transplant Patients Is Associated with Protracted Cold Ischemic Time of Seropositive Donor Organs. PLoS ONE. 2017;12: e0171035. doi: 10.1371/journal.pone.0171035 28129395
40. Leen AM, Sili U, Vanin EF, Jewell AM, Xie W, Vignali D, et al. Conserved CTL epitopes on the adenovirus hexon protein expand subgroup cross-reactive and subgroup-specific CD8+ T cells. Blood. 2004;104: 2432–2440. doi: 10.1182/blood-2004-02-0646 15265797
41. Keib A, Günther PS, Faist B, Halenius A, Busch DH, Neuenhahn M, et al. Presentation of a Conserved Adenoviral Epitope on HLA-C*0702 Allows Evasion of Natural Killer but Not T Cell Responses. Viral Immunol. 2017. doi: 10.1089/vim.2016.0145 28085643
42. Lugli E, Gattinoni L, Roberto A, Mavilio D, Price DA, Restifo NP, et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc. 2012;8: 33–42. doi: 10.1038/nprot.2012.143 23222456
43. Yao J, Bechter C, Wiesneth M, Härter G, Götz M, Germeroth L, et al. Multimer staining of cytomegalovirus phosphoprotein 65-specific T cells for diagnosis and therapeutic purposes: a comparative study. Clin Infect Dis. 2008;46: e96–105. doi: 10.1086/587749 18419478
44. Bettinotti MP, Panelli MC, Ruppe E, Mocellin S, Phan GQ, White DE, et al. Clinical and immunological evaluation of patients with metastatic melanoma undergoing immunization with the HLA-Cw*0702-associated epitope MAGE-A12:170–178. Int J Cancer. 2003;105: 210–216. doi: 10.1002/ijc.11045 12673681
45. Schlott F, Steubl D, Ameres S, Moosmann A, Dreher S, Heemann U, et al. Characterization and clinical enrichment of HLA-C*07:02-restricted Cytomegalovirus-specific CD8+ T cells. PLoS ONE. 2018;13: e0193554. doi: 10.1371/journal.pone.0193554 29489900
46. Appay V, van Lier RAW, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A. 2008;73: 975–983. doi: 10.1002/cyto.a.20643 18785267
47. Ameres S, Mautner J, Schlott F, Neuenhahn M, Busch DH, Plachter B, et al. Presentation of an Immunodominant Immediate-Early CD8+ T Cell Epitope Resists Human Cytomegalovirus Immunoevasion. PLoS Pathog. 2013;9: e1003383. doi: 10.1371/journal.ppat.1003383 23717207
48. van den Berg SPH, Pardieck IN, Lanfermeijer J, Sauce D, Klenerman P, van Baarle D, et al. The hallmarks of CMV-specific CD8 T-cell differentiation. Med Microbiol Immunol. 2019. doi: 10.1007/s00430-019-00608-7 30989333
49. Xia A, Zhang Y, Xu J, Yin T, Lu X-J. T Cell Dysfunction in Cancer Immunity and Immunotherapy. Front Immunol. 2019;10: 1719. doi: 10.3389/fimmu.2019.01719 31379886
50. Bunse CE, Borchers S, Varanasi PR, Tischer S, Figueiredo C, Immenschuh S, et al. Impaired functionality of antiviral T cells in G-CSF mobilized stem cell donors: implications for the selection of CTL donor. PLoS ONE. 2013;8: e77925. doi: 10.1371/journal.pone.0077925 24324576
51. Passweg JR, Baldomero H, Bader P, Bonini C, Duarte RF, Dufour C, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2017;52: 811–817. doi: 10.1038/bmt.2017.34 28287639
52. Gupta V, Tallman MS, Weisdorf DJ. Allogeneic hematopoietic cell transplantation for adults with acute myeloid leukemia: myths, controversies, and unknowns. Blood. 2011;117: 2307–2318. doi: 10.1182/blood-2010-10-265603 21098397
53. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129: 424–447. doi: 10.1182/blood-2016-08-733196 27895058
54. Barrett AJ, Savani BN. Stem cell transplantation with reduced-intensity conditioning regimens: a review of ten years experience with new transplant concepts and new therapeutic agents. Leukemia. 2006;20: 1661–1672. doi: 10.1038/sj.leu.2404334 16871277
55. Lazarus HM, Rowe JM. Reduced-intensity conditioning for acute myeloid leukemia: is this strategy correct. Leukemia. 2006;20: 1673–1682. doi: 10.1038/sj.leu.2404328 16871280
56. Wall SA, Devine S, Vasu S. The who, how and why: Allogeneic transplant for acute myeloid leukemia in patients older than 60years. Blood Rev. 2017;31: 362–369. doi: 10.1016/j.blre.2017.07.002 28802907
57. Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107: 2099–2107. doi: 10.1002/cncr.22233 17019734
58. Heslop HE. Equal-opportunity treatment of EBV-PTLD. Blood. 2012;119: 2436–2438. doi: 10.1182/blood-2012-01-397828 22422813
59. Zheng H, Matte-Martone C, Jain D, McNiff J, Shlomchik WD. Central Memory CD8+ T Cells Induce Graft-versus-Host Disease and Mediate Graft-versus-Leukemia. The Journal of Immunology. 2009;182: 5938–5948. doi: 10.4049/jimmunol.0802212 19414745
60. Chen BJ, Deoliveira D, Cui X, Le NT, Son J, Whitesides JF, et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse. Blood. 2007;109: 3115–3123. doi: 10.1182/blood-2006-04-016410 17148592
61. Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood. 2004;103: 1534–1541. doi: 10.1182/blood-2003-08-2987 14551132
62. Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ, et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest. 2003;112: 101–108. doi: 10.1172/JCI17601 12840064
63. Keib A, Mei Y- F, Cičin-Šain L, Busch DH, Dennehy KM. Measuring Antiviral Capacity of T Cell Responses to Adenovirus. The Journal of Immunology. 2019;202: 618–624. doi: 10.4049/jimmunol.1801003 30530481
64. O'Reilly RJ, Koehne G, Hasan AN, Doubrovina E, Prockop S. T-cell depleted allogeneic hematopoietic cell transplants as a platform for adoptive therapy with leukemia selective or virus-specific T-cells. Bone Marrow Transplant. 2015;50 Suppl 2: S43–50. doi: 10.1038/bmt.2015.95 26039207
65. Mann TH, Kaech SM. Tick-TOX, it's time for T cell exhaustion. Nat Immunol. 2019;20: 1092–1094. doi: 10.1038/s41590-019-0478-y 31427776
66. Sauce D, Almeida JR, Larsen M, Haro L, Autran B, Freeman GJ, et al. PD-1 expression on human CD8 T cells depends on both state of differentiation and activation status. AIDS. 2007;21: 2005–2013. doi: 10.1097/QAD.0b013e3282eee548 17885290
67. Duraiswamy J, Ibegbu CC, Masopust D, Miller JD, Araki K, Doho GH, et al. Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults. The Journal of Immunology. 2011;186: 4200–4212. doi: 10.4049/jimmunol.1001783 21383243
68. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;571: 211–218. doi: 10.1038/s41586-019-1325-x 31207603
69. Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, et al. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest. 2015. doi: 10.1172/JCI81229 26053664
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania