Repair of subtotal tympanic membrane perforations: A temporal bone study of several tympanoplasty materials
Autoři:
Mostafa M. A. S. Eldaebes aff001; Thomas G. Landry aff001; Manohar L. Bance aff001
Působiště autorů:
Department of Surgery, Division of Otolaryngology, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222728
Souhrn
The aim of this project was to investigate the effects of different types of graft material, and different remaining segments of the native TM on its motion. In twelve human temporal bones, controlled TM perforations were made to simulate three different conditions. (1) Central perforation leaving both annular and umbo rims of native TM. (2) Central perforation leaving only a malleal rim of native TM. (3) Central perforation leaving only an annular rim of native TM. Five different graft materials (1) perichondrium (2) silastic (3) thin cartilage (4) thick cartilage (5) Lotriderm® cream were used to reconstruct each perforation condition. Umbo and stapes vibrations to acoustic stimuli from 250 to 6349 Hz were measured using a scanning laser Doppler vibrometer. Results showed that at low frequencies: in the Two Rims condition, all grafting materials except thick cartilage and Lotriderm cream showed no significant difference in umbo velocity from the Normal TM, while only Lotriderm cream showed a significant decrease in stapes velocity; in the Malleal Rim condition, all materials showed a significant decrease in both umbo and stapes velocities; in the Annular Rim condition, all grafting materials except Lotriderm and perichondrium showed no significant difference from the Normal TM in stapes velocity. Umbo data might not be reliable in some conditions because of coverage by the graft. At middle and high frequencies: all materials showed a significant difference from the Normal TM in both umbo and stapes velocities for all perforation conditions except in the Annular Rim condition, in which silastic and perichondrium showed no significant difference from the Normal TM at umbo velocity in the middle frequencies. In the low frequencies, the choice of repair material does not seem to have a large effect on sound transfer. Our data also suggests that the annular rim could be important for low frequency sound transfer.
Klíčová slova:
Biology and life sciences – Physical sciences – Anatomy – Medicine and health sciences – Materials science – Physics – Head – Classical mechanics – Metallurgy – Alloys – Biological tissue – Connective tissue – Acoustics – Vibration – Cartilage – Ears – Sound pressure – Perichondrium – Middle ear – Brass
Zdroje
1. Lim DJ. Human tympanic membrane: an ultrastructural observation. Acta oto-laryngologica. 1970 Sep 1;70(3):176–86. Available from: http://dx.doi.org/10.3109/00016487009181875 5477148
2. Mehta RP, Rosowski JJ, Voss SE, O’Neil E, Merchant SN. Determinants of hearing loss in perforations of the tympanic membrane. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2006 Feb;27(2):136. Available from: http://dx.doi.org/10.1097/01.mao.0000176177.17636.53
3. Haynes DS, Vos JD, Labadie RF. Acellular allograft dermal matrix for tympanoplasty. Current opinion in otolaryngology & head and neck surgery. 2005 Oct 1;13(5):283–6. Available from: http://dx.doi.org/10.1097/01.moo.0000172820.97322.8d
4. Mohamad SH, Khan I, Hussain SM. Is cartilage tympanoplasty more effective than fascia tympanoplasty? A systematic review. Otology & Neurotology. 2012 Jul 1;33(5):699–705. Available from: http://dx.doi.org/10.1097/mao.0b013e318254fbc2
5. Van Rompaey V, Farr MR, Hamans E, Mudry A, Van de Heyning PH. Allograft tympanoplasty: A historical perspective. Otology & Neurotology. 2013 Jan 1;34(1):180–8. Available from: http://dx.doi.org/10.1097/mao.0b013e31826bf16d
6. Jesic SD, Dimitrijevic MV, Nesic VS, Jotic AD, Slijepcevic NA. Temporalis fascia graft perforation and retraction after tympanoplasty for chronic tubotympanic otitis and attic retraction pockets: factors associated with recurrence. Archives of Otolaryngology–Head & Neck Surgery. 2011 Feb 21;137(2):139–43. Available from: http://dx.doi.org/10.1001/archoto.2010.242
7. Zahnert T, Huttenbrink KB, Murbe D, Bornitz M. Experimental investigations of the use of cartilage in tympanic membrane reconstruction. Otology & Neurotology. 2000 May 1;21(3):322–8.
8. Aarnisalo AA, Cheng JT, Ravicz ME, Furlong C, Merchant SN, Rosowski JJ. Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hearing research. 2010 May 1;263(1–2):78–84. Available from: http://dx.doi.org/10.1016/j.heares.2009.11.005 19909803
9. Eldaebes MM, Landry TG, Bance ML. Effects of cartilage overlay on the tympanic membrane: Lessons from a temporal bone study for cartilage tympanoplasty. Otology & Neurotology. 2018 Sep 1;39(8):995–1004. Available from: http://dx.doi.org/10.1097/mao.0000000000001888
10. Adkins WY. Composite autograft for tympanoplasty and tympanomastoid surgery. The Laryngoscope. 1990 Mar;100(3):244–7. Available from: http://dx.doi.org/10.1288/00005537-199003000-00007 2308448
11. Milewski C. Composite graft tympanoplasty in the treatment of ears with advanced middle ear pathology. The Laryngoscope. 1993 Dec;103(12):1352–6. Available from: http://dx.doi.org/10.1288/00005537-199312000-00006 8246654
12. Dornhoffer JL. Hearing results with cartilage tympanoplasty. The Laryngoscope. 1997 Aug;107(8):1094–9. Available from: https://doi.org/10.1097/00005537-199708000-00016 9261014
13. Gerber MJ, Mason JC, Lambert PR. Hearing results after primary cartilage tympanoplasty. The Laryngoscope. 2000 Dec;110(12):1994–9. Available from: http://dx.doi.org/10.1097/00005537-200012000-00002 11129007
14. Lee JC, Lee SR, Nam JK, Lee TH, Kwon JK. Comparison of different grafting techniques in type I tympanoplasty in cases of significant middle ear granulation. Otology & Neurotology. 2012 Jun 1;33(4):586–90. Available from: http://dx.doi.org/10.1097/mao.0b013e31824b78ba
15. Murbe D, Zahnert T, Bornitz M, Huttenbrink KB. Acoustic properties of different cartilage reconstruction techniques of the tympanic membrane. The Laryngoscope. 2002 Oct;112(10):1769–76. Available from: http://dx.doi.org/10.1097/00005537-200210000-00012 12368613
16. Aarnisalo AA, Cheng JT, Ravicz ME, Hulli N, Harrington EJ, Hernandez-Montes MS, et al. Middle ear mechanics of cartilage tympanoplasty evaluated by laser holography and vibrometry. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2009 Dec;30(8):1209. Available from: http://dx.doi.org/10.1097/mao.0b013e3181bc398e
17. Allardyce BJ, Rajkhowa R, Dilley RJ, Xie Z, Campbell L, Keating A, et al. Comparative acoustic performance and mechanical properties of silk membranes for the repair of chronic tympanic membrane perforations. Journal of the mechanical behavior of biomedical materials. 2016 Dec 1;64:65–74. Available from: http://dx.doi.org/10.1016/j.jmbbm.2016.07.017 27479895
18. Voss SE, Rosowski JJ, Merchant SN, Peake WT. How do tympanic-membrane perforations affect human middle-ear sound transmission?. Acta oto-laryngologica. 2001 Jan 1;121(2):169–73. Available from: https://doi.org/10.1080/000164801300043343 11349771
19. Kringlebotn M. The equality of volume displacements in the inner ear windows. The Journal of the Acoustical Society of America. 1995 Jul;98(1):192–6. Available from: http://dx.doi.org/10.1121/1.413746 7608399
20. Voss SE, Rosowski JJ, Merchant SN, Peake WT. Acoustic responses of the human middle ear. Hearing research. 2000 Dec 1;150(1–2):43–69. Available from: https://doi.org/10.1016/S0378-5955(00)00177-5 11077192
21. Gea SL, Decraemer WF, Funnell RW, Dirckx JJ, Maier H. Tympanic membrane boundary deformations derived from static displacements observed with computerized tomography in human and gerbil. Journal of the Association for Research in Otolaryngology. 2010 Mar 1;11(1):1–7. Available from: https://doi.org/10.1007/s10162-009-0192-9 19834763
22. Rosowski JJ, Cheng JT, Ravicz ME, Hulli N, Hernandez-Montes M, Harrington E, et al. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4–25 kHz. Hearing research. 2009 Jul 9;253(1–2):83–96. Available from: http://dx.doi.org/10.1016/j.heares.2009.03.010 19328841
23. O'Connor KN, Tam M, Blevins NH, Puria S. Tympanic membrane collagen fibers: a key to high‐frequency sound conduction. The Laryngoscope. 2008 Mar;118(3):483–90. Available from: http://dx.doi.org/10.1097/mlg.0b013e31815b0d9f 18091335
24. Aernouts J. Mechanical properties of the tympanic membrane: Measurement and modeling. Doctoral dissertation, University of Antwerp, Belgium. 2012.
25. Lee CF, Chen JH, Chou YF, Hsu LP, Chen PR, Liu TC. Optimal graft thickness for different sizes of tympanic membrane perforation in cartilage myringoplasty: a finite element analysis. The Laryngoscope. 2007 Apr;117(4):725–30. Available from: http://dx.doi.org/10.1097/mlg.0b013e318031f0e7. 17415145
26. Chien W, Ravicz ME, Merchant SN, Rosowski JJ. The effect of methodological differences in the measurement of stapes motion in live and cadaver ears. Audiology and Neurotology. 2006;11(3):183–97. Available from: https://doi.org/10.1159/000091815 16514236
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania