#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Increased proliferation and altered cell cycle regulation in pancreatic stem cells derived from patients with congenital hyperinsulinism


Autoři: Sophie G. Kellaway aff001;  Karolina Mosinska aff001;  Zainaba Mohamed aff002;  Alexander Ryan aff001;  Stephen Richardson aff001;  Melanie Newbould aff003;  Indraneel Banerjee aff002;  Mark J. Dunne aff001;  Karen E. Cosgrove aff001
Působiště autorů: Faculty of Biology Medicine and Health, School of Medicine, Division of Diabetes Endocrinology and Gastroenterology, University of Manchester, Manchester, United Kingdom aff001;  Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, United Kingdom aff002;  Department of Paediatric Histopathology, Royal Manchester Children’s Hospital, Manchester, United Kingdom aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222350

Souhrn

Congenital hyperinsulinism (CHI) is characterised by inappropriate insulin secretion causing profound hypoglycaemia and brain damage if inadequately controlled. Pancreatic tissue isolated from patients with diffuse CHI shows abnormal proliferation rates, the mechanisms of which are not fully resolved. Understanding cell proliferation in CHI may lead to new therapeutic options, alongside opportunities to manipulate β-cell mass in patients with diabetes. We aimed to generate cell-lines from CHI pancreatic tissue to provide in vitro model systems for research. Three pancreatic mesenchymal stem cell-lines (CHIpMSC1-3) were derived from patients with CHI disease variants: focal, atypical and diffuse. All CHIpMSC lines demonstrated increased proliferation compared with control adult-derived pMSCs. Cell cycle alterations including increased CDK1 levels and decreased p27Kip1 nuclear localisation were observed in CHIpMSCs when compared to control pMSCs. In conclusion, CHIpMSCs are a useful in vitro model to further understand the cell cycle alterations leading to increased islet cell proliferation in CHI.

Klíčová slova:

Biology and life sciences – Cell biology – Biochemistry – Physical sciences – Chemistry – Research and analysis methods – Cell processes – Cell cycle and cell division – Anatomy – Medicine and health sciences – Chemical compounds – Organic compounds – Carbohydrates – Monosaccharides – Organic chemistry – Endocrinology – Diabetic endocrinology – Insulin – Hormones – Spectrum analysis techniques – Spectrophotometry – Cytophotometry – Flow cytometry – Specimen preparation and treatment – Staining – Cell staining – Group-specific staining – Alizarin staining – Glucose – Endocrine system – Exocrine glands – Pancreas – Nuclear staining


Zdroje

1. Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in Infancy: From Basic Science to Clinical Disease. Physiological Reviews. 2004;84(1):239–75. doi: 10.1152/physrev.00022.2003 14715916

2. Verkarre V, Fournet JC, de Lonlay P, Gross-Morand MS, Devillers M, Rahier J, et al. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. The Journal of Clinical Investigation. 1998;102(7):1286–91. doi: 10.1172/JCI4495 9769320

3. Glaser B, Ryan F, Donath M, Landau H, Stanley CA, Baker L, et al. Hyperinsulinism caused by paternal-specific inheritance of a recessive mutation in the sulfonylurea-receptor gene. Diabetes. 1999;48(8):1652–7. doi: 10.2337/diabetes.48.8.1652 10426386

4. Fournet J-C, Mayaud C, de Lonlay P, Gross-Morand M-S, Verkarre V, Castanet M, et al. Unbalanced Expression of 11p15 Imprinted Genes in Focal Forms of Congenital Hyperinsulinism: Association with a Reduction to Homozygosity of a Mutation in ABCC8 or KCNJ11. The American Journal of Pathology. 2001;158(6):2177–84. doi: 10.1016/S0002-9440(10)64689-5 11395395

5. Kassem SA, Ariel I, Thornton PS, Hussain K, Smith V, Lindley KJ, et al. p57KIP2 Expression in Normal Islet Cells and in Hyperinsulinism of Infancy. Diabetes. 2001;50(12):2763–9. doi: 10.2337/diabetes.50.12.2763 11723059

6. Glaser B, Thornton P, Otonkoski T, Junien C. Genetics of neonatal hyperinsulinism. Archives of Disease in Childhood—Fetal and Neonatal Edition. 2000;82(2):F79–F86. doi: 10.1136/fn.82.2.F79 10685979

7. Dunne MJ, Kane C, Shepherd RM, Sanchez JA, James RFL, Johnson PRV, et al. Familial Persistent Hyperinsulinemic Hypoglycemia of Infancy and Mutations in the Sulfonylurea Receptor. New England Journal of Medicine. 1997;336(10):703–6. doi: 10.1056/NEJM199703063361005 9041101

8. Arnoux J-B, Verkarre V, Saint-Martin C, Montravers F, Brassier A, Valayannopoulos V, et al. Congenital hyperinsulinism: current trends in diagnosis and therapy. Orphanet Journal of Rare Diseases. 2011;6(1):1–14.

9. Henquin J-C, Sempoux C, Marchandise J, Godecharles S, Guiot Y, Nenquin M, et al. Congenital Hyperinsulinism Caused by Hexokinase I Expression or Glucokinase-Activating Mutation in a Subset of β-Cells. Diabetes. 2013;62(5):1689–96. doi: 10.2337/db12-1414 23274908

10. Han B, Mohamed Z, Estebanez MS, Craigie RJ, Newbould M, Cheesman E, et al. Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells. The Journal of Clinical Endocrinology & Metabolism. 2017;102(9):3261–7.

11. Alexandrescu S, Tatevian N, Olutoye O, Brown RE. Persistent hyperinsulinemic hypoglycemia of infancy: constitutive activation of the mTOR pathway with associated exocrine-islet transdifferentiation and therapeutic implications. International Journal of Clinical and Experimental Pathology. 2010;3(7):691–705. 20830240

12. Salisbury RJ, Han B, Jennings RE, Berry AA, Stevens A, Mohamed Z, et al. Altered Phenotype of β-Cells and Other Pancreatic Cell Lineages in Patients With Diffuse Congenital Hyperinsulinism in Infancy Caused by Mutations in the ATP-Sensitive K-Channel. Diabetes. 2015;64(9):3182–8. doi: 10.2337/db14-1202 25931474

13. Bertoli C, Skotheim JM, de Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518–28. doi: 10.1038/nrm3629 23877564

14. Morgan DO. Principles of CDK regulation. Nature. 1995;374(6518):131–4. doi: 10.1038/374131a0 7877684

15. Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene. 2009;28(33):2925–39. doi: 10.1038/onc.2009.170 19561645

16. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429(6987):41–6 doi: 10.1038/nature02520 15129273

17. Shimomura K, Tusa M, Iberl M, Brereton MF, Kaizik S, Proks P, et al. A Mouse Model of Human Hyperinsulinism Produced by the E1506K Mutation in the Sulphonylurea Receptor SUR1. Diabetes. 2013;62(11):3797–806. doi: 10.2337/db12-1611 23903354

18. Kulkarni RN, Mizrachi E-B, Ocana AG, Stewart AF. Human β-Cell Proliferation and Intracellular Signaling. Driving in the Dark Without a Road Map. 2012;61(9):2205–13.

19. Fiaschi-Taesch NM, Kleinberger JW, Salim FG, Troxell R, Wills R, Tanwir M, et al. Human Pancreatic β-Cell G1/S Molecule Cell Cycle Atlas. Diabetes. 2013;62(7):2450–9. doi: 10.2337/db12-0777 23493570

20. Burrow KL, Hoyland JA, Richardson SM. Human Adipose-Derived Stem Cells Exhibit Enhanced Proliferative Capacity and Retain Multipotency Longer than Donor-Matched Bone Marrow Mesenchymal Stem Cells during Expansion In Vitro. Stem Cells International. 2017;2017:15.

21. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. doi: 10.1080/14653240600855905 16923606

22. Russ HA, Ravassard P, Kerr-Conte J, Pattou F, Efrat S. Epithelial-Mesenchymal Transition in Cells Expanded In Vitro from Lineage-Traced Adult Human Pancreatic Beta Cells. PLoS ONE. 2009;4(7):e6417. doi: 10.1371/journal.pone.0006417 19641613

23. Malumbres M, Sotillo Ro, Santamaría D, Galán J, Cerezo A, Ortega S, et al. Mammalian Cells Cycle without the D-Type Cyclin-Dependent Kinases Cdk4 and Cdk6. Cell. 2004;118(4):493–504. doi: 10.1016/j.cell.2004.08.002 15315761

24. Eberhardt M, Salmon P, von Mach M-A, Hengstler JG, Brulport M, Linscheid P, et al. Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochemical and Biophysical Research Communications. 2006;345(3):1167–76. doi: 10.1016/j.bbrc.2006.05.016 16713999

25. Gallo R, Gambelli F, Gava B, Sasdelli F, Tellone V, Masini M, et al. Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death Differ. 2007;14(11):1860–71. doi: 10.1038/sj.cdd.4402199 17612586

26. Lima MJ, Muir KR, Docherty HM, Drummond R, McGowan NWA, Forbes S, et al. Suppression of Epithelial-to-Mesenchymal Transitioning Enhances Ex Vivo Reprogramming of Human Exocrine Pancreatic Tissue Toward Functional Insulin-Producing β-Like Cells. Diabetes. 2013;62(8):2821–33. doi: 10.2337/db12-1256 23610058

27. Joglekar MV, Joglekar VM, Joglekar SV, Hardikar AA. Human fetal pancreatic insulin-producing cells proliferate in vitro. Journal of Endocrinology. 2009;201(1):27–36. doi: 10.1677/JOE-08-0497 19171567

28. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, et al. New functional activities for the p21 family of CDK inhibitors. Genes & Development. 1997;11(7):847–62.

29. Zhang Li, Jiang Yang, Lei Cai, et al. GLP-1 ameliorates the proliferation activity of INS-1 cells inhibited by intermittent high glucose concentrations through the regulation of cyclins. Molecular Medicine Reports. 2014;10(2):683–8. doi: 10.3892/mmr.2014.2265 24859892

30. Hershko A. Mechanisms and regulation of the degradation of cyclin B. Philosophical Transactions of the Royal Society B: Biological Sciences. 1999;354(1389):1571–6.

31. Hall E, Nitert MD, Volkov P, Malmgren S, Mulder H, Bacos K, et al. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Molecular and Cellular Endocrinology. 2017.

32. Chen X, Niu H, Yu Y, Wang J, Zhu S, Zhou J, et al. Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Nucleic Acids Research. 2016;44(6):2742–53. doi: 10.1093/nar/gkv1544 26801641

33. Tornovsky-Babeay S, Dadon D, Ziv O, Tzipilevich E, Kadosh T, Schyr-Ben Haroush R, et al. Type 2 Diabetes and Congenital Hyperinsulinism Cause DNA Double-Strand Breaks and p53 Activity in β Cells. Cell Metabolism. 2014;19(1):109–21. doi: 10.1016/j.cmet.2013.11.007 24332968

34. Paris M, Bernard-Kargar C, Berthault M-F, Bouwens L, Ktorza A. Specific and Combined Effects of Insulin and Glucose on Functional Pancreatic β-Cell Mass in Vivo in Adult Rats. Endocrinology. 2003;144(6):2717–27. doi: 10.1210/en.2002-221112 12746336

35. Annicotte J-S, Blanchet E, Chavey C, Iankova I, Costes S, Assou S, et al. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nat Cell Biol. 2009;11(8):1017–23. doi: 10.1038/ncb1915 19597485


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#