Irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation
Autoři:
Jangho Lee aff001; Joon Park aff001; Young Ho Kim aff003; Nam Hyouck Lee aff003; Kyung-Mo Song aff003
Působiště autorů:
Research Division of Food Functionality, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
aff001; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
aff002; Research Division of Strategic Food Technology, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222559
Souhrn
Irisin is an exercise-induced myokine that has various physiological functions, such as roles in energy expenditure, glucose/lipid metabolism, and muscle development. In muscle development, myoblast proliferation is known to be a first step, and recent studies have reported that an increased irisin level is involved in the promotion of cell proliferation in various cell types, including myoblasts. However, the exact mechanism of action by which irisin promotes myoblast proliferation has not been reported. In this study, we aimed to determine the pro-proliferative effect of irisin on C2C12 myoblasts and its mechanism of action. Irisin induced C2C12 cell proliferation and upregulated the mRNA levels of markers of proliferation Pcna, Mki67, and Mcm2. Irisin increased extracellular signal-regulated kinase (ERK) phosphorylation, and U0126, an ERK pathway inhibitor, suppressed irisin-induced C2C12 cell proliferation. Transcriptomic and qRT-PCR analysis showed that Ccl2, Ccl7, Ccl8, and C3 are potential downstream regulators of ERK signaling that promote C2C12 cell proliferation. Knockdown of Ccl7 revealed that irisin upregulates chemokine (C-C motif) ligand 7 (CCL7) and subsequently promotes C2C12 cell proliferation. These results suggest that irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation and may aid in understanding how irisin contributes to muscle development.
Klíčová slova:
Biology and life sciences – Cell biology – Genetics – Gene expression – Genomics – Genome analysis – Biochemistry – Nucleic acids – Computational biology – Research and analysis methods – Cell processes – Gene regulation – Cellular types – Animal cells – Stem cells – Medicine and health sciences – Small interfering RNAs – RNA – Non-coding RNA – Immunology – Immune response – Signal transduction – Bioassays and physiological analysis – Biochemical analysis – Colorimetric assays – Enzyme assays – Cell signaling – Signaling cascades – Transcriptome analysis – MTS assay – Cell proliferation – Myoblasts – ERK signaling cascade
Zdroje
1. Perakakis N, Triantafyllou GA, Fernández-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glucose homeostasis. Nature Reviews Endocrinology. 2017;13(6):324. doi: 10.1038/nrendo.2016.221 28211512
2. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463. doi: 10.1038/nature10777 22237023
3. Aydin S, Kuloglu T, Aydin S, Kalayci M, Yilmaz M, Cakmak T, et al. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides. 2014;61:130–6. doi: 10.1016/j.peptides.2014.09.014 25261800
4. Zhang Y, Song H, Zhang Y, Wu F, Mu Q, Jiang M, et al. Irisin inhibits atherosclerosis by promoting endothelial proliferation through microRNA126‐5p. Journal of the American Heart Association. 2016;5(9):e004031. doi: 10.1161/JAHA.116.004031 27671318
5. Qiao X, Nie Y, Ma Y, Chen Y, Cheng R, Yin W, et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Scientific reports. 2016;6:18732. doi: 10.1038/srep18732 26738434
6. Mahgoub MO, D’Souza C, AlDarmaki RS, Baniyas MM, Adeghate E. An update on the role of irisin in the regulation of endocrine and metabolic functions. Peptides. 2018.
7. Rodríguez A, Becerril S, Méndez-Giménez L, Ramírez B, Sáinz N, Catalán V, et al. Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. International Journal of Obesity. 2015;39(3):397. doi: 10.1038/ijo.2014.166 25199621
8. Reza MM, Subramaniyam N, Sim CM, Ge X, Sathiakumar D, McFarlane C, et al. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nature communications. 2017;8(1):1104. doi: 10.1038/s41467-017-01131-0 29062100
9. Liu Y, Cai Y, Liu L, Wu Y, Xiong X. Crucial biological functions of CCL7 in cancer. PeerJ. 2018;6:e4928. doi: 10.7717/peerj.4928 29915688
10. Ford J, Hughson A, Lim K, Bardina SV, Lu W, Charo IF, et al. CCL7 is a negative regulator of cutaneous inflammation following Leishmania major infection. Frontiers in immunology. 2018;9.
11. Maddaluno M, Di Lauro M, Di Pascale A, Santamaria R, Guglielmotti A, Grassia G, et al. Monocyte chemotactic protein-3 induces human coronary smooth muscle cell proliferation. Atherosclerosis. 2011;217(1):113–9. doi: 10.1016/j.atherosclerosis.2011.04.002 21536288
12. Ke BC, Huang XX, Li Y, Li LY, Xu QX, Gao Y, et al. Neuronal-derived Ccl7 drives neuropathic pain by promoting astrocyte proliferation. NeuroReport. 2016;27(11):849–57. doi: 10.1097/WNR.0000000000000625 27295026
13. Jurikova M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta histochemica. 2016;118(5):544–52. doi: 10.1016/j.acthis.2016.05.002 27246286
14. Liu X, Mujahid H, Rong B, Lu Qh, Zhang W, Li P, et al. Irisin inhibits high glucose‐induced endothelial‐to‐mesenchymal transition and exerts a dose‐dependent bidirectional effect on diabetic cardiomyopathy. Journal of cellular and molecular medicine. 2018;22(2):808–22. doi: 10.1111/jcmm.13360 29063670
15. Liu S, Du F, Li X, Wang M, Duan R, Zhang J, et al. Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells. PloS one. 2017;12(4):e0175498. doi: 10.1371/journal.pone.0175498 28394923
16. Longo A, Gradini R, Mattei V, Morgante E, Sale P, Tafani M, et al. C3‐induced 3LL cell proliferation is mediated by C kinase. Journal of cellular biochemistry. 2005;94(3):635–44. doi: 10.1002/jcb.20336 15547948
17. Yang Z, Chen X, Chen Y, Zhao Q. Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice. International journal of clinical and experimental pathology. 2015;8(6):6490. 26261526
18. Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, et al. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget. 2018;9(24):17220. doi: 10.18632/oncotarget.24991 29682218
19. Song H, Wu F, Zhang Y, Zhang Y, Wang F, Jiang M, et al. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PloS one. 2014;9(10):e110273. doi: 10.1371/journal.pone.0110273 25338001
20. Maddaluno M, Di Lauro M, Di Pascale A, Santamaria R, Guglielmotti A, Grassia G, et al. Monocyte chemotactic protein-3 induces human coronary smooth muscle cell proliferation. 2011;217(1):113–9.
21. Fu Y, Ma D, Liu Y, Li H, Chi J, Liu W, et al. Tissue factor pathway inhibitor gene transfer prevents vascular smooth muscle cell proliferation by interfering with the MCP-3/CCR2 pathway. 2015;95(11):1246.
22. Parikh N, Shuck RL, Gagea M, Shen L, Donehower LAJAc. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene‐induced lung tumors in aged mice. 2018;17(1):e12691.
23. Wyler L, Napoli C, Ingold B, Sulser T, Heikenwälder M, Schraml P, et al. Brain metastasis in renal cancer patients: metastatic pattern, tumour-associated macrophages and chemokine/chemoreceptor expression. 2014;110(3):686.
24. Lee YS, Kim S-Y, Song SJ, Hong HK, Lee Y, Oh BY, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. 2016;7(24):36842.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania