Dysregulation of microRNAs and target genes networks in human abdominal aortic aneurysm tissues
Autoři:
Neire Niara Ferreira de Araujo aff001; Hui Tzu Lin-Wang aff002; Juliana de Freitas Germano aff003; Pedro Silvio Farsky aff001; Andre Feldman aff001; Fabio Henrique Rossi aff004; Nilo Mitsuru Izukawa aff004; Maria de Lourdes Higuchi aff005; Felicio Savioli Neto aff001; Mario Hiroyuki Hirata aff002; Marcelo Chiara Bertolami aff001
Působiště autorů:
Department of Clinical Cardiology, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
aff001; Laboratory of Molecular Investigation in Cardiology, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
aff002; School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
aff003; Department of Vascular Surgery, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
aff004; Laboratory of Cardiac Pathology, Heart Institute, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222782
Souhrn
Background
Abdominal aortic aneurysm (AAA) is a pathological enlargement of infrarenal aorta close to the aortic bifurcation, and it is an important cause of mortality in the elderly. Therefore, the biomarker identification for early diagnosis is of great interest for clinical benefit. It is known that microRNAs (miRNAs) have important roles via target genes regulation in many diseases. This study aimed to identify miRNAs and their target genes involved in the pathogenesis of AAA.
Methods
Tissue samples were obtained from patients who underwent AAA surgery and from organ donors (control group). Quantitative PCR Array was applied to assess 84 genes and 384 miRNAs aiming to identify differentially expressed targets (AAA n = 6, control n = 6), followed by validation in a new cohort (AAA n = 18, control n = 6) by regular qPCR. The functional interaction between validated miRNAs and target genes was performed by the Ingenuity Pathway Analysis (IPA) software.
Results
The screening cohort assessed by PCR array identified 10 genes and 59 miRNAs differentially expressed (≥2-fold change, p<0.05). Among these, IPA identified 5 genes and 9 miRNAs with paired interaction. ALOX5, PTGIS, CX3CL1 genes, and miR-193a-3p, 125b-5p, 150-5p maintained a statistical significance in the validation cohort. IPA analysis based on the validated genes and miRNAs revealed that eicosanoid and metalloproteinase/TIMP synthesis are potentially involved in AAA.
Conclusion
Paired interactions of differentially expressed ALOX5, PTGIS, CX3CL1 genes, and miR-193b-3p, 125b-5p, 150-5p revealed a potentially significant role of the eicosanoid synthesis and metalloproteinase/TIMP pathways in the AAA pathogenesis.
Klíčová slova:
Biology and life sciences – Genetics – Gene expression – Biochemistry – Nucleic acids – Research and analysis methods – Proteins – Molecular biology – Neuroscience – Gene regulation – Molecular biology techniques – Medicine and health sciences – Pathology and laboratory medicine – RNA – Non-coding RNA – Artificial gene amplification and extension – Polymerase chain reaction – Neurochemistry – Neurochemicals – Vascular medicine – Natural antisense transcripts – MicroRNAs – Vascular diseases – Aneurysms – Pathogenesis – Eicosanoids – Elastin
Zdroje
1. Lederle F A; Johnson G R; Wilson SE. Abdominal aortic aneurysms in women. J Vasc Surg. 2001;34: 122–126. doi: 10.1067/mva.2001.115275 11436084
2. Pande RL, Beckman JA. Abdominal Aortic Aneurysm: Populations at Risk and How to Screen. Journal of Vascular and Interventional Radiology. 2008;19: S2–S8. doi: 10.1016/j.jvir.2008.03.010 18502382
3. Lindholt J., Heegaard NH., Vammen S, Fasting H, Henneberg E., Heickendorff L. Smoking, but not Lipids, Lipoprotein (a) and Antibodies Against Oxidised LDL, is Correlated to the Expansion of Abdominal Aortic Aneurysms. Eur J Vasc Endovasc Surg. 2001;21: 51–56. doi: 10.1053/ejvs.2000.1262 11170878
4. Golledge J, Muller J, Daugherty A, Norman P. Abdominal aortic aneurysm: Pathogenesis and implications for management. Arterioscler Thromb Vasc Biol. 2006;26: 2605–2613. doi: 10.1161/01.ATV.0000245819.32762.cb 16973970
5. Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol. 2011;8: 92–102. doi: 10.1038/nrcardio.2010.180 21079638
6. Lederle FA, Walker JM, Reinke DB. Selective screening for abdominal aortic aneurysms with physical examination and ultrasound. Arch Intern Med. 1988;148: 1753–1756. 3041938
7. Lindholt JS, Vammen S, Juul S, Henneberg EW, Fasting H. The validity of ultrasonographic scanning as screening method for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 1999;17: 472–475. doi: 10.1053/ejvs.1999.0835 10375481
8. Reed WW, Hallett JW, Damiano MA, Ballard DJ. Learning from the last ultrasound. A population-based study of patients with abdominal aortic aneurysm. Arch Intern Med. 1997;157: 2064–2068. 9382661
9. Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41: S1–S58. doi: 10.1016/j.ejvs.2010.09.011 21215940
10. Folkesson M, Kazi M, Zhu C, Silveira A, Hemdahl A-L, Hamsten A, et al. Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms. Thromb Haemost. 2007;98: 427–433. 17721627
11. Iyer V, Rowbotham S, Biros E, Bingley J, Golledge J. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis. 2017. pp. 78–89. doi: 10.1016/j.atherosclerosis.2017.03.010 28347473
12. Golledge J, Clancy P, Moran C, Biros E, Rush C, Walker P, et al. The novel association of the chemokine CCL22 with abdominal aortic aneurysm. Am J Pathol. American Society for Investigative Pathology; 2010;176: 2098–2106. doi: 10.2353/ajpath.2010.090416 20348247
13. Biros E, Moran CS, Wang Y, Walker PJ, Cardinal J, Golledge J. MicroRNA profiling in patients with abdominal aortic aneurysms: the significance of miR-155. Clin Sci. 2014;126: 795–803. doi: 10.1042/CS20130599 24283299
14. Olena AF, Patton JG. Genomic organization of microRNAs. JCell Physiol. 2014;222: 540–545.
15. Schöler N, Langer C, Döhner H, Buske C, Kuchenbauer F. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol. 2010;38: 1126–1130. doi: 10.1016/j.exphem.2010.10.004 20977925
16. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285: 17442–17452. doi: 10.1074/jbc.M110.107821 20353945
17. Raffort J, Lareyre F, Clement M, Mallat Z. Micro-RNAs in abdominal aortic aneurysms: insights from animal models and relevance to human disease. Cardiovasc Res. 2016;110: 165–177. doi: 10.1093/cvr/cvw046 26965051
18. Zhang W, Shang T, Huang C, Yu T, Liu CC, Qiao T, et al. Plasma microRNAs serve as potential biomarkers for abdominal aortic aneurysm. Clin Biochem. Elsevier B.V.; 2015;48: 988–992. doi: 10.1016/j.clinbiochem.2015.04.016 25916817
19. Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology. 2009;10: R64. doi: 10.1186/gb-2009-10-6-r64 19531210
20. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 2008;3: 1101–1108. doi: 10.1038/nprot.2008.73 18546601
21. Pahl MC, Derr K, Gäbel G, Hinterseher I, Elmore JR, Schworer CM, et al. MicroRNA expression signature in human abdominal aortic aneurysms. BMC Med Genomics. 2012;15: 25–37. doi: 10.1186/1755-8794-5-25 22704053
22. Majesky MW. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol. 2007;27: 1248–1258. doi: 10.1161/ATVBAHA.107.141069 17379839
23. Tavares Monteiro JA, da Silva ES, Raghavan ML, Puech-Leão P, de Lourdes Higuchi M O J. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. J Vasc Surg. 2014;59: 1393–401. doi: 10.1016/j.jvs.2013.04.064 23891493
24. Gerstmeier J, Weinigel C, Rummler S, Rådmark O, Werz O, Garscha U. Time-resolved in situ assembly of the leukotriene-synthetic 5-lipoxygenase/5-lipoxygenase-activating protein complex in blood leukocytes. FASEB J. 2016;30: 1892–1900.
25. Zhao L, Moos MPW, Gräbner R, Pédrono F, Fan J, Kaiser B, et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nature medicine. 2004;10: 966–973. doi: 10.1038/nm1099 15322539
26. Bhamidipati CM, Whatling CA, Mehta GS, Meher AK, Hajzus VA, Su G, et al. 5-lipoxygenase pathway in experimental abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2014;34: 2669–2678. doi: 10.1161/ATVBAHA.114.304016 25324573
27. Lee JM, Park H, Noh ALSM, Kang J-H, Chen L, Zheng T, et al. 5-Lipoxygenase mediates RANKL-induced osteoclast formation via the cysteinyl leukotriene receptor 1. J Immunol. 2012;189: 5284–5292. doi: 10.4049/jimmunol.1003738 23109727
28. Abdul-Hussien H, Soekhoe RG V, Weber E, von der Thüsen JH, Kleemann R, Mulder A, et al. Collagen degradation in the abdominal aneurysm: a conspiracy of matrix metalloproteinase and cysteine collagenases. Am J Pathol. 2007;170: 809–817. doi: 10.2353/ajpath.2007.060522 17322367
29. Sun J, Sukhova GK, Zhang J, Chen H, Sjöberg S, Libby P, et al. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. 2012;32: 15–23. doi: 10.1161/ATVBAHA.111.235002 21817099
30. Busch S, Auth E, Scholl F, Huenecke S, Koehl U, Suess B, et al. 5-lipoxygenase is a direct target of miR-19a-3p and miR-125b-5p. J Immunol. 2015;194: 1646–1653. doi: 10.4049/jimmunol.1402163 25589070
31. Weiss HJ, Turitto VT. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium. Blood. 1979;53: 244–250. 367465
32. DeWitt DL, Day JS, Sonnenburg WK, Smith WL. Concentrations of prostaglandin endoperoxide synthase and prostaglandin I2 synthase in the endothelium and smooth muscle of bovine aorta. J Clin Invest. 1983;72: 1882–1888. doi: 10.1172/JCI111151 6417165
33. Ricciotti E, FitzGerald GA. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011;31: 986–1000. doi: 10.1161/ATVBAHA.110.207449 21508345
34. Yi X, Lin J, Luo H, Wang C, Liu Y. Genetic variants of PTGS2, TXA2R and TXAS1 are associated with carotid plaque vulnerability, platelet activation and TXA2 levels in ischemic stroke patients. Bachschmid MM, editor. PLOS ONE. 2017;12: e0180704. doi: 10.1371/journal.pone.0180704 28704403
35. Mima K, Nishihara R, Yang J, Dou R, Masugi Y, Shi Y, et al. MicroRNA MIR21 (miR-21) and PTGS2 expression in colorectal cancer and patient survival. Clin Cancer Res. 2016;22: 3841–3848. doi: 10.1158/1078-0432.CCR-15-2173 26957558
36. Kin K, Miyagawa S, Fukushima S, Shirakawa Y, Torikai K, Shimamura K, et al. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc. 2012;1: e000745. doi: 10.1161/JAHA.112.000745 23316282
37. Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4: 122ra22. doi: 10.1126/scitranslmed.3003441 22357537
38. Ma X, Yao H, Yang Y, Jin L, Wang Y, Wu L, et al. miR-195 suppresses abdominal aortic aneurysm through the TNF-α/NF-κB and VEGF/PI3K/Akt pathway. Int J Mol Med. 2018;41: 2350–2358. doi: 10.3892/ijmm.2018.3426 29393364
39. Elmore JR, Keister BF, Franklin DP, Youkey JR, Carey DJ. Expression of Matrix Metalloproteinases and TIMPs in Human Abdominal Aortic Aneurysms. 1998;12: 221–228. doi: 10.1007/s100169900144 9588507
40. Defawe OD, Colige A, Lambert CA, Munaut C, Delvenne P, Lapière CM, et al. TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc Res. 2003;60: 205–213. doi: 10.1016/s0008-6363(03)00513-3 14522424
41. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385: 640–644. doi: 10.1038/385640a0 9024663
42. Siedlinski M, Nosalski R, Szczepaniak P, Ludwig-Gałȩzowska AH, Mikołajczyk T, Filip M, et al. Vascular transcriptome profiling identifies Sphingosine kinase 1 as a modulator of angiotensin II-induced vascular dysfunction. Sci Rep. 2017;7: 1–13.
43. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters. Proc Natl Acad Sci U S A. 2011;108: 8287–8292. doi: 10.1073/pnas.1105254108 21536891
44. Wang K, Lin Z-Q, Long B, Li J-H, Zhou J, Li P-F. Cardiac hypertrophy is positively regulated by microRNA miR-23a. J Biol Chem. 2012;287: 589–599. doi: 10.1074/jbc.M111.266940 22084234
45. Iaconetti C, De Rosa S, Polimeni A, Sorrentino S, Gareri C, Carino A, et al. Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res. 2015;107: 522–533. doi: 10.1093/cvr/cvv141 25994172
46. Lee H, Han S, Kwon CS, Lee D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein and Cell. Higher Education Press; 2016;7: 100–113. doi: 10.1007/s13238-015-0212-y 26399619
47. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7: 759–764. doi: 10.4161/cc.7.6.5834 18344688
48. Wang X, Cao L, Wang Yi, Wang X, Liu N, You Y. Regulation of let-7 and its target oncogenes (Review). Oncol Lett. 2012;3: 955–960. doi: 10.3892/ol.2012.609 22783372
49. Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS, et al. Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics. 2010;11: 1–15.
50. Rothman A, Restrepo H, Sarukhanov V, Evans WN, Wiencek RG, Williams R, et al. Assessment of microRNA and gene dysregulation in pulmonary hypertension by endoarterial biopsy. Pulm Circ. 2017;7: 455–464. doi: 10.1177/2045893217704206 28597755
51. Wanhainen A, Mani K, Vorkapic E, De Basso R, Björck M, Länne T, et al. Screening of circulating microRNA biomarkers for prevalence of abdominal aortic aneurysm and aneurysm growth. Atherosclerosis. 2017;256: 82–88. doi: 10.1016/j.atherosclerosis.2016.11.007 27993388
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania