Hierarchical integrated and segregated processing in the functional brain default mode network within attention-deficit/hyperactivity disorder
Autoři:
Yongchen Fan aff001; Rong Wang aff003; Pan Lin aff004; Ying Wu aff001
Působiště autorů:
State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, China
aff001; School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China
aff002; College of Science, Xi’an University of Science and Technology, Xi’an, China
aff003; Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Hunan, China
aff004; National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an, China
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222414
Souhrn
The hierarchical modular organization of functional networks in the brain is crucial for supporting diverse cognitive functions. Functional disorders in the brain are associated with an abnormal hierarchical modular organization. The default mode network (DMN) is a complex dynamic network that is linked to specialized cognitive functions and clinically relevant information. In this study, we hypothesize that hierarchical functional segregation and integration of the DMN within attention-deficit/hyperactivity disorder (ADHD) is abnormal. We investigated topological metrics of both segregation and integration in different hierarchical subnetworks of the DMN between patients with ADHD and healthy controls. We found that the hierarchical functional integration and segregation of the DMN decreased and increased, respectively, in ADHD. Our results also indicated that the abnormalities in the DMN are intrinsically caused by changes in functional segregation and integration in its higher-level subnetworks. To better understand the temporally dynamic changes in the hierarchical functional integration and segregation of the DMN within ADHD, we further analyzed the dynamic transitions between functional segregation and integration. We found that the adaptive reorganizational ability of brain network states decreased in ADHD patients, which indicated less adaptive regulation between the DMN subnetworks in ADHD for supporting correspondingly normal cognitive function. From the perspective of hierarchical functional segregation and integration, our results further provide evidence to support dysfunctional brain cognitive functions within ADHD linked to brain network segregation and integration.
Klíčová slova:
Biology and life sciences – Physical sciences – Research and analysis methods – Neuroscience – Cognitive science – Computer and information sciences – Network analysis – Mathematics – Anatomy – Medicine and health sciences – Diagnostic medicine – Neurology – Imaging techniques – Mental health and psychiatry – Brain – Cognition – Brain mapping – Functional magnetic resonance imaging – Neuroimaging – Cerebral hemispheres – Left hemisphere – Right hemisphere – Diagnostic radiology – Magnetic resonance imaging – Radiology and imaging – Neural networks – Developmental neuroscience – Neurodevelopmental disorders – ADHD – Neuropsychiatric disorders – Graph theory – Clustering coefficients
Zdroje
1. Fayyad J, Sampson NA, Hwang I, Adamowski T, Aguilar-Gaxiola S, Al-Hamzawi A, et al. The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys. 2016;9(1):1–19.
2. Barkley RA. Issues in the diagnosis of attention-deficit/hyperactivity disorder in children. Brain & Development. 2003;25(2):77–83.
3. Posner J, Park C, Wang Z. Connecting the Dots: A Review of Resting Connectivity MRI Studies in Attention-Deficit/Hyperactivity Disorder. Neuropsychology Review. 2014;24(1):3–15. doi: 10.1007/s11065-014-9251-z 24496902
4. Wang R, Wang L, Yang Y, Li J, Wu Y, Lin P. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder. Phys Rev E. 2016;94(5–1):052411. doi: 10.1103/PhysRevE.94.052411 27967144.
5. Zhao C, Zhao M, Yang Y, Gao J, Rao N, Lin PJIJoB, et al. The Reorganization of Human Brain Networks Modulated by Driving Mental Fatigue. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. 2016;PP(99).
6. Fukushima M, Betzel RF, He Y, Mp VDH, Zuo XN, Sporns O. Structure-function relationships during segregated and integrated network states of human brain functional connectivity. Brain Structure & Function. 2017:1–16.
7. Sporns OJCOiN. Network attributes for segregation and integration in the human brain. 2013;23(2):162–71.
8. Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA. 1994;91(11):5033–7. doi: 10.1073/pnas.91.11.5033 8197179
9. Fox PT, Friston KJ. Distributed processing; distributed functions? Neuroimage. 2012;61(2):407–26. doi: 10.1016/j.neuroimage.2011.12.051 22245638
10. Lin P, Sun J, Yu G, Wu Y, Yang Y, Liang M, et al. Global and local brain network reorganization in attention-deficit/hyperactivity disorder. Brain Imaging Behav. 2013;8(4):558–69. doi: 10.1007/s11682-013-9279-3
11. Liu T, Lin P, Chen Y, Wang J. Electroencephalogram synchronization analysis for attention deficit hyperactivity disorder children. Bio-Med Mater Eng. 2014;24(1):1035–9.
12. Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp. 2010;31(6):904–16. doi: 10.1002/hbm.21058 20496381.
13. Wang R, Lin P, Wu Y. Exploring dynamic temporal-topological structure of brain network within ADHD. In: Liljenström H, editor. Advances in Cognitive Neurodynamics (IV). Advances in Cognitive Neurodynamics: Springer Netherlands; 2015. p. 93–8.
14. Zhou C, Zemanova L, Zamora G, Hilgetag CC, Kurths J. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett. 2006;97(23):238103. 17280251.
15. Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically modular organization of brain networks. Front Neurosci. 2010;4:200. doi: 10.3389/fnins.2010.00200 21151783; PubMed Central PMCID: PMC3000003.
16. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ETJFN. Hierarchical modularity in human brain functional networks. Frontiers in Neuroinformatics. 2009;3:37. doi: 10.3389/neuro.11.037.2009 19949480
17. Diez I, Bonifazi P, Escudero I, Mateos B, Muñoz MA, Stramaglia S, et al. A novel brain partition highlights the modular skeleton shared by structure and function. Scientific Reports. 2015;5:10532. doi: 10.1038/srep10532 26037235
18. Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M, et al. Altered Negative BOLD Responses in the Default-Mode Network during Emotion Processing in Depressed Subjects. Neuropsychopharmacology. 2009;34(4):932. doi: 10.1038/npp.2008.81 18536699
19. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJSJN, et al. Default-mode brain dysfunction in mental disorders: A systematic review. Neuroscience and Biobehavioral Reviews. 2009;33(3):279–96. doi: 10.1016/j.neubiorev.2008.09.002 18824195
20. Lin P, Yang Y, Jovicich J, Pisapia ND, Wang X, Zuo CS, et al. Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance. Brain Imaging & Behavior. 2016;10(1):1–14.
21. Whitfieldgabrieli S, Ford JM. Default Mode Network Activity and Connectivity in Psychopathology. Annu Rev Clin Psychol. 2012;8(8):49–76.
22. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8. doi: 10.1073/pnas.0135058100 12506194; PubMed Central PMCID: PMC140943.
23. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–8. doi: 10.1073/pnas.0504136102 15976020; PubMed Central PMCID: PMC1157105.
24. Lin P, Yang Y, Gao J, De PN, Ge S, Wang X, et al. Dynamic Default Mode Network across Different Brain States. Scientific Reports. 2017;7:46088. doi: 10.1038/srep46088 28382944
25. Pan L, Uri H, Jorge J, Simon RJCC. A neuronal basis for task-negative responses in the human brain. Cerebral Cortex. 2011;21(4):821–30. doi: 10.1093/cercor/bhq151 20805236
26. Franzen JD, Heinrichs-Graham E, White ML, Wetzel MW, Knott NL, Wilson TW. Atypical coupling between posterior regions of the default mode network in attention-deficit/hyperactivity disorder: a pharmaco-magnetoencephalography study. Journal of Psychiatry & Neuroscience Jpn. 2013;38(3):120054.
27. Mccarthy H, Skokauskas N, Mulligan A, Donohoe G, Mullins D, Kelly J, et al. Attention Network Hypoconnectivity With Default and Affective Network Hyperconnectivity in Adults Diagnosed With Attention-Deficit/Hyperactivity Disorder in Childhood. Jama Psychiatry. 2013;70(12):1329–37. doi: 10.1001/jamapsychiatry.2013.2174 24132732
28. Uddin LQ, Kelly AMC, Biswal BB, Margulies DS, Shehzad Z, Shaw D, et al. Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods. 2008;169(1):249–54. doi: 10.1016/j.jneumeth.2007.11.031 18190970
29. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiat. 2008;63(3):332–7. doi: 10.1016/j.biopsych.2007.06.025 17888409
30. Schölvinck ML, Maier A, Frank QY, Duyn JH, Leopold DA. Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A. 2010;107(22):10238–43. doi: 10.1073/pnas.0913110107 20439733
31. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89. 11771995
32. Toga AW, Thompson PM. Mapping brain asymmetry. Nature Reviews Neuroscience. 2003;4(1):37–48. 12511860
33. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, et al. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study. Neuroimage. 2011;54(1):191–202. doi: 10.1016/j.neuroimage.2010.07.066 20688177
34. Saenger VM, Barrios FA, Martínezgudiño ML, Alcauter S. Hemispheric asymmetries of functional connectivity and grey matter volume in the default mode network. Neuropsychologia. 2012;50(7):1308–15. doi: 10.1016/j.neuropsychologia.2012.02.014 22387608
35. Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998;393(6684):440. 9623998
36. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69. doi: 10.1016/j.neuroimage.2009.10.003 19819337.
37. Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci. 2011;12(1):43–56. doi: 10.1038/nrn2961 21170073.
38. Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. Journal of Neuroscience. 2013;33(27):11239–52. doi: 10.1523/JNEUROSCI.1091-13.2013 23825427; PubMed Central PMCID: PMC3718368.
39. Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, et al. The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron. 2016;92(2):544–54. doi: 10.1016/j.neuron.2016.09.018 27693256; PubMed Central PMCID: PMC5073034.
40. Wang R, Zhang Z-Z, Ma J, Yang Y, Lin P, Wu Y. Spectral properties of the temporal evolution of brain network structure. Chaos. 2015;25(12):123112. doi: 10.1063/1.4937451 26723151
41. Damien A, Jonathan, Nagel, Bonnie J, Bathula Deepti, et al. Atypical Default Network Connectivity in Youth with Attention-Deficit/Hyperactivity Disorder. Fair Biological Psychiatry. 2010;68(12):1084–91. doi: 10.1016/j.biopsych.2010.07.003 20728873
42. Smith V, Mitchell DJ, Duncan JJCC. Role of the default mode network in cognitive transitions. 2018;28(10):3685–96.
43. Laird AR, Eickhoff SB, Karl L, Robin DA, Glahn DC, Fox PT. Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. Journal of Neuroscience. 2015;29(46):14496–505.
44. Wang S, Taren AA, Smith DVJB. Functional Parcellation of the Default Mode Network: A Large-Scale Meta-Analysis. 2017:225375.
45. Robert L, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(1):12–32.
46. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the Structural Core of Human Cerebral Cortex. PLOS Biology. 2008;6(7):e159. doi: 10.1371/journal.pbio.0060159 18597554
47. Horn A, Ostwald D, Reisert M, Blankenburg FJN. The structural–functional connectome and the default mode network of the human brain. Neuroimage. 2014;102:142–51. doi: 10.1016/j.neuroimage.2013.09.069 24099851
48. Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, et al. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Human Brain Mapping. 2009;30(2):638–49. doi: 10.1002/hbm.20530 18219621.
49. Deco G, Jirsa VK, Mcintosh AR. Resting brains never rest: computational insights into potential cognitive architectures. Trends in Neurosciences. 2013;36(5):268–74. doi: 10.1016/j.tins.2013.03.001 23561718
50. Shine JM, Koyejo O, Poldrack RA. Temporal metastates are associated with differential patterns of time-resolved connectivity, network topology, and attention. Proc Natl Acad Sci U S A. 2016;113(35):9888. doi: 10.1073/pnas.1604898113 27528672
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania