Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants
Autoři:
Yong-Ju Huang aff001; Sophie Paillard aff002; Vinod Kumar aff002; Graham J. King aff003; Bruce D. L. Fitt aff001; Régine Delourme aff002
Působiště autorů:
School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, England, United Kingdom
aff001; IGEPP, INRA, Agrocampus Ouest, Univ Rennes, BP, France
aff002; Southern Cross University, Lismore, Australia
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222540
Souhrn
Key message: One QTL for resistance against Leptosphaeria maculans growth in leaves of young plants in controlled environments overlapped with one QTL detected in adult plants in field experiments.
The fungal pathogen Leptosphaeria maculans initially infects leaves of oilseed rape (Brassica napus) in autumn in Europe and then grows systemically from leaf lesions along the leaf petiole to the stem, where it causes damaging phoma stem canker (blackleg) in summer before harvest. Due to the difficulties of investigating resistance to L. maculans growth in leaves and petioles under field conditions, identification of quantitative resistance typically relies on end of season stem canker assessment on adult plants. To investigate whether quantitative resistance can be detected in young plants, we first selected nine representative DH (doubled haploid) lines from an oilseed rape DY (‘Darmor-bzh’ × ‘Yudal’) mapping population segregating for quantitative resistance against L. maculans for controlled environment experiment (CE). We observed a significant correlation between distance grown by L. maculans along the leaf petiole towards the stem (r = 0.91) in CE experiments and the severity of phoma stem canker in field experiments. To further investigate quantitative trait loci (QTL) related to resistance against growth of L. maculans in leaves of young plants in CE experiments, we selected 190 DH lines and compared the QTL detected in CE experiments with QTL related to stem canker severity in stems of adult plants in field experiments. Five QTL for resistance to L. maculans growth along the leaf petiole were detected; collectively they explained 35% of the variance. Two of these were also detected in leaf lesion area assessments and each explained 10–12% of the variance. One QTL on A02 co-localized with a QTL detected in stems of adult plants in field experiments. This suggests that resistance to the growth of L. maculans from leaves along the petioles towards the stems contributes to the quantitative resistance assessed in stems of adult plants in field experiments at the end of the growing season.
Klíčová slova:
Biology and life sciences – Genetics – Plant science – Organisms – Eukaryota – Plants – Plant pathology – Plant pathogens – People and places – Genetic loci – Quantitative trait loci – Geographical locations – Europe – Agriculture – Earth sciences – Plant anatomy – Leaves – Crop science – Crops – Seasons – Spring – Flowering plants – Brassica – Rapeseed
Zdroje
1. Beddington J. Food security: contributions from science to a new and greener revolution. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1537):61–71.
2. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484(7393):186–94. doi: 10.1038/nature10947 22498624
3. Bebber DP, Ramotowski MA, Gurr SJ. Crop pests and pathogens move polewards in a warming world. Nature Climate Change. 2013;3(11):985–8.
4. Hughes DJ, West JS, Atkins SD, Gladders P, Jeger MJ, Fitt BD. Effects of disease control by fungicides on greenhouse gas emissions by UK arable crop production. Pest Management Science. 2011;67(9):1082–92. doi: 10.1002/ps.2151 21495152
5. Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology. 2014;7(4):133–41. doi: 10.1007/s12154-014-0113-1 25320647
6. Carter HE, Fraaije BA, West JS, Kelly SL, Mehl A, Shaw MW, et al. Alterations in the predicted regulatory and coding regions of the sterol 14α‐demethylase gene (CYP51) confer decreased azole sensitivity in the oilseed rape pathogen Pyrenopeziza brassicae. Molecular Plant Pathology. 2014;15(5):513–22. doi: 10.1111/mpp.12106 24298976
7. Sewell TR, Hawkins NJ, Stotz HU, Huang Y, Kelly SL, Kelly DE, et al. Azole sensitivity in Leptosphaeria pathogens of oilseed rape: the role of lanosterol 14α-demethylase. Scientific Reports. 2017;7(1):15849. doi: 10.1038/s41598-017-15545-9 29158527
8. Lindhout P. The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica. 2002;124(2):217–26.
9. Delourme R, Chevre A, Brun H, Rouxel T, Balesdent M, Dias J, et al. Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). European Journal of Plant Pathology. 2006;114(1):41–52.
10. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. Shades of gray: the world of quantitative disease resistance. Trends in Plant Science. 2009;14(1):21–9. doi: 10.1016/j.tplants.2008.10.006 19062327
11. Balesdent M-H, Louvard K, Pinochet X, Rouxel T. A large-scale survey of races of Leptosphaeria maculans occurring on oilseed rape in France. European Journal of Plant Pathology. 2006;114(1):53–65.
12. Huang YJ, Evans N, Li ZQ, Eckert M, Chèvre AM, Renard M, et al. Temperature and leaf wetness duration affect phenotypic expression of Rlm6‐mediated resistance to Leptosphaeria maculans in Brassica napus. New Phytologist. 2006;170(1):129–41. doi: 10.1111/j.1469-8137.2005.01651.x 16539610
13. Bent AF, Mackey D. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annual Review of Phytopathology. 2007;45:399–436. doi: 10.1146/annurev.phyto.45.062806.094427 17506648
14. Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, et al. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLm1. New Phytologist. 2013;197(2):595–605. doi: 10.1111/nph.120433. 23206118
15. Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, et al. A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. European Journal of Plant Pathology. 2003;109(8):871–81.
16. Sprague SJ, Balesdent M-H, Brun H, Hayden HL, Marcroft SJ, Pinochet X, et al. Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia. European Journal of Plant Pathology. 2006;1(114):33–40.
17. Soanes DM, Talbot NJ. Moving targets: rapid evolution of oomycete effectors. Trends in Microbiology. 2008;16(11):507–10. doi: 10.1016/j.tim.2008.08.002 18819803
18. Zhang X, Peng G, Kutcher HR, Balesdent M-H, Delourme R, Fernando WD. Breakdown of Rlm3 resistance in the Brassica napus–Leptosphaeria maculans pathosystem in western Canada. European Journal of Plant Pathology. 2016;145(3):659–74.
19. Rouxel T, Balesdent MH. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. New Phytologist. 2017;214(2):526–32. doi: 10.1111/nph.14411 28084619
20. Chartrain L, Brading P, Widdowson J, Brown J. Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology. 2004;94(5):497–504. doi: 10.1094/PHYTO.2004.94.5.497 18943769
21. Huang YJ, Pirie E, Evans N, Delourme R, King G, Fitt BDL. Quantitative resistance to symptomless growth of Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape). Plant Pathology. 2009;58(2):314–23.
22. Brun H, Chèvre AM, Fitt BDL, Powers S, Besnard AL, Ermel M, et al. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist. 2010;185(1):285–99. doi: 10.1111/j.1469-8137.2009.03049.x 19814776
23. Pilet-Nayel M-L, Moury B, Caffier V, Montarry J, Kerlan M-C, Fournet S, et al. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Frontiers in Plant Science. 2017;8:1838. doi: 10.3389/fpls.2017.01838 29163575
24. Howlett BJ. Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Canadian Journal of Plant Pathology. 2004;26(3):245–52.
25. Fitt BDL, Brun H, Barbetti MJ, Rimmer SR. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed Rape (Brassica napus). European Journal of Plant Pathology. 2006;114(1):3–15. doi: 10.1007/s10658-005-2233-5
26. West JS, Kharbanda P, Barbetti M, Fitt BD. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathology. 2001;50(1):10–27.
27. Huang YJ, Fitt BDL, Jedryczka M, Dakowska S, West JS, Gladders P, et al. Patterns of ascospore release in relation to phoma stem canker epidemiology in England (Leptosphaeria maculans) and Poland (Leptosphaeria biglobosa). European Journal of Plant Pathology. 2005;111(3):263–77.
28. Toscano‐Underwood C, West JS, Fitt BD, Todd A, Jedryczka M. Development of phoma lesions on oilseed rape leaves inoculated with ascospores of A‐group or B‐group Leptosphaeria maculans (stem canker) at different temperatures and wetness durations. Plant Pathology. 2001;50(1):28–41.
29. Huang YJ, Toscano‐Underwood C, Fitt BDL, Hu X, Hall A. Effects of temperature on ascospore germination and penetration of oilseed rape (Brassica napus) leaves by A‐or B‐group Leptosphaeria maculans (phoma stem canker). Plant Pathology. 2003;52(2):245–55.
30. Huang YJ, Mitrousia GK, Sidique SNM, Qi A, Fitt BDL. Combining R gene and quantitative resistance increases effectiveness of cultivar resistance against Leptosphaeria maculans in Brassica napus in different environments. PLoS One. 2018;13(5):e0197752. doi: 10.1371/journal.pone.0197752 29791484
31. Yu F, Lydiate DJ, Rimmer SR. Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome. 2008;51(1):64–72. doi: 10.1139/g07-103 18356940
32. Zhang X, Fernando WD. Insights into fighting against blackleg disease of Brassica napus in Canada. Crop and Pasture Science. 2018;69(1):40–7.
33. Balesdent M, Attard A, Ansan-Melayah D, Delourme R, Renard M, Rouxel T. Genetic control and host range of avirulence toward Brassica napus cultivars Quinta and Jet Neuf in Leptosphaeria maculans. Phytopathology. 2001;91(1):70–6. doi: 10.1094/PHYTO.2001.91.1.70 18944280
34. Yu F, Lydiate D, Rimmer S. Identification of two novel genes for blackleg resistance in Brassica napus. Theoretical and Applied Genetics. 2005;110(5):969–79. doi: 10.1007/s00122-004-1919-y 15798929
35. Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, et al. Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theoretical and Applied Genetics. 2012;125(2):405–18. doi: 10.1007/s00122-012-1842-6 22454144
36. Huang YJ, Qi A, King GJ, Fitt BDL. Assessing quantitative resistance against Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) in young plants. PLoS One. 2014;9(1):e84924. doi: 10.1371/journal.pone.0084924 24454767
37. Travadon R, Marquer B, Ribule A, Sache I, Masson J, Brun H, et al. Systemic growth of Leptosphaeria maculans from cotyledons to hypocotyls in oilseed rape: influence of number of infection sites, competitive growth and host polygenic resistance. Plant Pathology. 2009;58(3):461–9.
38. Rimmer SR. Resistance genes to Leptosphaeria maculans in Brassica napus. Canadian Journal of Plant Pathology. 2006;28(S1):S288–S97.
39. Raman H, Raman R, Larkan N. Genetic dissection of blackleg resistance loci in rapeseed (Brassica napus L.). Plant Breeding from Laboratories to Fields: IntechOpen; 2013.
40. Larkan NJ, Ma L, Borhan MH. The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnology Journal. 2015;13(7):983–92. doi: 10.1111/pbi.12341 25644479
41. Delourme R, Bousset L, Ermel M, Duffe P, Besnard A-L, Marquer B, et al. Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infection, Genetics and Evolution. 2014;27:490–9. doi: 10.1016/j.meegid.2013.12.019 24394446
42. Pilet M, Delourme R, Foisset N, Renard M. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Theoretical and Applied Genetics. 1998;96(1):23–30.
43. Delourme R, Piel N, Horvais R, Pouilly N, Domin C, Vallée P, et al. Molecular and phenotypic characterization of near isogenic lines at QTL for quantitative resistance to Leptosphaeria maculans in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics. 2008;117(7):1055–67. doi: 10.1007/s00122-008-0844-x 18696043
44. Jestin C, Vallée P, Domin C, Manzanares-Dauleux MJ, Delourme R. Assessment of a new strategy for selective phenotyping applied to complex traits in Brassica napus. Open Journal of Genetics. 2012;2(4):190.
45. Foisset N, Delourme R, Barret P, Hubert N, Landry B, Renard M. Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theoretical and Applied Genetics. 1996;93(7):1017–25. doi: 10.1007/BF00230119 24162475
46. Stachowiak A, Olechnowicz J, Jedryczka M, Rouxel T, Balesdent M-H, Happstadius I, et al. Frequency of avirulence alleles in field populations of Leptosphaeria maculans in Europe. European Journal of Plant Pathology. 2006;114(1):67–75.
47. Liu S, Liu Z, Fitt BD, Evans N, Foster S, Huang Y, et al. Resistance to Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) induced by L. biglobosa and chemical defence activators in field and controlled environments. Plant Pathology. 2006;55(3):401–12.
48. Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Glaser AI, et al. The guide to Genstat release 10, part 2: Statistics. VSN International: Hemel Hempstead, UK. 2011.
49. Kumar V, Paillard S, Fopa-Fomeju B, Falentin C, Deniot G, Baron C, et al. Multi-year linkage and association mapping confirm the high number of genomic regions involved in oilseed rape quantitative resistance to blackleg. Theoretical and Applied Genetics. 2018;131(8):1627–43. doi: 10.1007/s00122-018-3103-9 29728747
50. Broman KW, Wu H, Sen Ś, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19(7):889–90. doi: 10.1093/bioinformatics/btg112 12724300
51. Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker. Frontiers in Plant Science. 2015;6:772. doi: 10.3389/fpls.2015.00772 26442081
52. Huang YJ, Jestin C, Welham S, King GJ, Manzanares-Dauleux M, Fitt BDL, et al. Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus). Theoretical and Applied Genetics. 2016;129(1):169–80. doi: 10.1007/s00122-015-2620-z 26518572
53. Pilet M, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, et al. Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Science. 2001;41(1):197–205.
54. Jestin C, Bardol N, Lode M, Duffe P, Domin C, Vallée P, et al. Connected populations for detecting quantitative resistance factors to phoma stem canker in oilseed rape (Brassica napus L.). Molecular Breeding. 2015;35(8):167.
55. Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950–3. doi: 10.1126/science.1253435 25146293
56. Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, et al. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theoretical and Applied Genetics. 2016;129(10):1887–99. doi: 10.1007/s00122-016-2746-7 27364915
57. West JS, Biddulph J, Fitt BD, Gladders P. Epidemiology of Leptosphaeria maculans in relation to forecasting stem canker severity on winter oilseed rape in the UK. Annals of Applied Biology. 1999;135(2):535–46.
58. Raman H, Raman R, Diffey S, Qiu Y, McVittie B, Barbulescu DM, et al. Stable quantitative resistance loci to blackleg disease in canola (Brassica napus L.) over continents. Frontiers in Plant Science. 2018;9. doi: 10.3389/fpls.2018.00009 29403519
59. McDonald B. How can we achieve durable disease resistance in agricultural ecosystems? New Phytologist. 2010;185(1):3–5. doi: 10.1111/j.1469-8137.2009.03108.x 20088970
60. Delourme R, Brun H, Ermel M, Lucas M, Vallee P, Domin C, et al. Expression of resistance to Leptosphaeria maculans in Brassica napus double haploid lines in France and Australia is influenced by location. Annals of Applied Biology. 2008;153(2):259–69.
61. Larkan NJ, Raman H, Lydiate DJ, Robinson SJ, Yu F, Barbulescu DM, et al. Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus. BMC Plant Biology. 2016;16(1):183. doi: 10.1186/s12870-016-0877-2 27553246
62. Li H, Sivasithamparam K, Barbetti M. Soilborne ascospores and pycnidiospores of Leptosphaeria maculans can contribute significantly to blackleg disease epidemiology in oilseed rape (Brassica napus) in Western Australia. Australasian Plant Pathology. 2007;36(5):439–44.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania