Inhibition of gap junctional intercellular communication by an anti-migraine agent, flunarizine
Autoři:
Joo Hye Yeo aff001; Eun Ju Choi aff001; Jinu Lee aff001
Působiště autorů:
College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222326
Souhrn
Gap junctions (GJs), which consist of proteins called connexins, are intercellular channels that allow the passage of ions, second messengers, and small molecules. GJs and connexins are considered as emerging therapeutic targets for various diseases. Previously, we screened numerous compounds using our recently developed iodide yellow fluorescent protein gap junctional intercellular communication (I-YFP GJIC) assay and found that flunarizine (FNZ), used for migraine prophylaxis and as an add-on therapy for epilepsy, inhibits GJIC in LN215 human glioma cells. In this study, we confirmed that FNZ inhibits GJIC using the I-YFP GJIC assay. We demonstrated that FNZ inhibits GJ activities via a mechanism that is independent of calcium channels and dopaminergic D2, histaminergic H1, or 5-HT receptors. In addition, we showed that FNZ significantly increases connexin 43 (Cx43) phosphorylation on the cell surface, but does not alter the total amount of Cx43. The beneficial effects of FNZ on migraines and epilepsy might be related to GJ inhibition.
Klíčová slova:
Biology and life sciences – Biochemistry – Physical sciences – Chemistry – Research and analysis methods – Proteins – Molecular biology – Neuroscience – Molecular biology techniques – Medicine and health sciences – Chemical compounds – Pathology and laboratory medicine – Organic compounds – Organic chemistry – Diagnostic medicine – Signs and symptoms – Pharmaceutics – Drug therapy – Hormones – Molecular probe techniques – Neurochemistry – Post-translational modification – Neurotransmitters – Phosphorylation – Luminescent proteins – Yellow fluorescent protein – Biogenic amines – Catecholamines – Dopamine – Histamine – Immunoblotting – Headaches – Migraine – Receptor antagonist therapy – Calcium antagonist therapy – Amines – Iodides
Zdroje
1. Goodenough D a, Goliger J a, Paul DL. Connexins, connexons, and Intercellular Communication. Annu Rev Biochem. 1996;65: 475–502. doi: 10.1146/annurev.bi.65.070196.002355 8811187
2. Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol. Elsevier; 2015;768: 71–76. doi: 10.1016/j.ejphar.2015.10.030 26499977
3. Severs NJ, Coppen SR, Dupont E, Yeh HI, Ko YS, Matsushita T. Gap junction alterations in human cardiac disease. Cardiovascular Research. 2004. doi: 10.1016/j.cardiores.2003.12.007 15094356
4. Garbelli R, Frassoni C, Condorelli DF, Trovato Salinaro A, Musso N, Medici V, et al. Expression of connexin 43 in the human epileptic and drug-resistant cerebral cortex. Neurology. 2011;76: 895–902. doi: 10.1212/WNL.0b013e31820f2da6 21383325
5. Sarrouilhe D, Dejean C, Mesnil M. Involvement of gap junction channels in the pathophysiology of migraine with aura. Frontiers in Physiology. 2014. doi: 10.3389/fphys.2014.00078 24611055
6. Vinken M. Gap junctions and non-neoplastic liver disease. Journal of Hepatology. 2012. doi: 10.1016/j.jhep.2012.02.036 22609308
7. Kandyba EE, Hodgins MB, Martin PE. A murine living skin equivalent amenable to live-cell imaging: Analysis of the roles of connexins in the epidermis. J Invest Dermatol. 2008; doi: 10.1038/sj.jid.5701125 17960178
8. Akopian A, Kumar S, Ramakrishnan H, Roy K, Viswanathan S, Bloomfield SA. Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma. J Clin Invest. 2017;127: 2647–2661. doi: 10.1172/JCI91948 28604388
9. Pallares-Ruiz N, Blanchet P, Mondain M, Claustres M, Roux AF. A large deletion including most of GJB6 in recessive non syndromic deafness: A digenic effect? Eur J Hum Genet. 2002; doi: 10.1038/sj.ejhg.5200762 11896458
10. Bergoffen J, Scherer SS, Wang S, Oronzi Scott M, Bone LJ, Paul DL, et al. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science (80-). 1993; doi: 10.1126/science.8266101 8266101
11. Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, et al. Connexin 43 (GJA1) Mutations Cause the Pleiotropic Phenotype of Oculodentodigital Dysplasia. Am J Hum Genet. 2003; doi: 10.1086/346090 12457340
12. Paznekas WA, Karczeski B, Vermeer S, Lowry RB, Delatycki M, Laurence F, et al. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Human Mutation. 2009. doi: 10.1002/humu.20958 19338053
13. Upham BL, Weis LM, Trosko JE. Modulated Gap Junctional Intercellular Communication as a Biomarker of PAH Epigenetic Toxicity: Structure-Function Relationship. Environ Health Perspect. 1998;106: 975. doi: 10.1289/ehp.98106s4975 9703481
14. U JET, Chang C, Upham B, Wilson M. Epigenetic toxicology as toxicant-induced changes in intracellular signalling leading to altered gap junctional intercellular communication. 1998;
15. Yamasaki H. Role of disrupted gap junctional intercellular communications in detection and characterization of carcinogens. Mutation Research—Reviews in Genetic Toxicology. 1996. doi: 10.1016/S0165-1110(96)90014-7
16. Vinken M, Doktorova T, Decrock E, Leybaert L, Vanhaecke T, Rogiers V. Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. 2009;44: 201–222. doi: 10.1080/10409230903061215 19635038
17. Lee JY, Choi EJ, Lee J. A new high-throughput screening-compatible gap junctional intercellular communication assay. BMC Biotechnol. BMC Biotechnology; 2015;15: 1–9. doi: 10.1186/s12896-015-0115-2 25636680
18. Yeo JH, Lee J. An Iodide-Yellow Fluorescent Protein-Gap Junction-Intercellular Communication Assay. J Vis Exp. 2019; doi: 10.3791/58966 30774121
19. Todd PA, Benfield P. Flunarizine. A reappraisal of its pharmacological properties and therapeutic use in neurological disorders. Drugs. 1989;
20. Asanuma M, Ogawa N, Haba K, Hirata H, Mori A. Calcium antagonist flunarizine hydrochloride affects striatal D2 dopamine receptors in the young adult and aged rat brain. Arch Gerontol Geriatr. 1991; doi: 10.1016/0167-4943(91)90049-V
21. Amini A, Heidari K, Kariman H, Taghizadeh M, Hatamabadi H, Shahrami A, et al. Histamine Antagonists for Treatment of Peripheral Vertigo: A Meta-Analysis. J Int Adv Otol. 2015; doi: 10.5152/iao.2015.1169 26381004
22. Zhu YH, Wang YL, Yang XP. Antagonistic effects of dipfluzine, flunarizine, and cinnarizine on 5-hydroxytryptamine-evoked contraction in pig basilar artery. Zhongguo Yao Li Xue Bao. 1996;
23. Karsan N, Palethorpe D, Rattanawong W, Marin JC, Bhola R, Goadsby PJ. Flunarizine in migraine-related headache prevention: results from 200 patients treated in the UK. Eur J Neurol. 2018; doi: 10.1111/ene.13621 29512871
24. Lee JY, Yoon SM, Choi EJ, Lee J. Terbinafine inhibits gap junctional intercellular communication. Toxicol Appl Pharmacol. 2016;307: 102–107. doi: 10.1016/j.taap.2016.07.022 27487578
25. Choi EJ, Yeo JH, Yoon SM, Lee J. Gambogic Acid and Its Analogs Inhibit Gap Junctional Intercellular Communication. 2018;9: 1–10. doi: 10.3389/fphar.2018.00814 30104974
26. Peracchia C. Chemical gating of gap junction channels: Roles of calcium, pH and calmodulin. Biochimica et Biophysica Acta—Biomembranes. 2004. doi: 10.1016/j.bbamem.2003.10.020 15033579
27. Verselis VK, Srinivas M. Connexin channel modulators and their mechanisms of action. Neuropharmacology. 2013. doi: 10.1016/j.neuropharm.2013.03.020 23597508
28. Rackauskas M, Neverauskas V, Skeberdis VA. Diversity and properties of connexin gap junction channels. Medicina (B Aires). 2010; doi: 1001-01 [pii]
29. Lampe PD, Lau AF. Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys. 2000; doi: 10.1006/abbi.2000.2131 11368307
30. Axelsen LN, Calloe K, Holstein-Rathlou N-H, Nielsen MS. Managing the complexity of communication: regulation of gap junctions by post-translational modification. Front Pharmacol. 2013; doi: 10.3389/fphar.2013.00130 24155720
31. Dunn CA, Lampe PD. Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci. 2014; doi: 10.1242/jcs.142497 24213533
32. Cooper CD, Lampe PD. Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem. 2002; doi: 10.1074/jbc.M209427200 12270943
33. Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication. International Journal of Biochemistry and Cell Biology. 2004. doi: 10.1016/S1357-2725(03)00264-4 15109565
34. Solan JL, Lampe PD. Connexin43 in LA-25 Cells with Active v-src Is Phosphorylated on Y247, Y265, S262, S279/282, and S368 via Multiple Signaling Pathways. Cell Commun Adhes. 2008;15: 75–84. doi: 10.1080/15419060802014016 18649180
35. Geletu M, Trotman-Grant A, Raptis L. Mind the gap; Regulation of gap junctional, intercellular communication by the src oncogene product and its effectors. Anticancer Research. 2012. doi: 32/10/4245 [pii] 23060544
36. Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol. 2000; doi: 10.1083/jcb.149.7.1503 10871288
37. Kubo K, Matsuda Y, Kase H, Yamada K. Inhibition of calmodulin-dependent cyclic nucleotide phosphodiesterase by flunarizine, a calcium-entry blocker. Biochem Biophys Res Commun. 1984;124: 315–321. doi: 10.1016/0006-291x(84)91555-9 6093793
38. Durham PL, Garrett FG. Neurological mechanisms of migraine: Potential of the gap-junction modulator tonabersat in prevention of migraine. Cephalalgia. 2009; doi: 10.1111/j.1468-2982.2009.01976.x 19723120
39. Dermietzel R, Hertberg EL, Kessler JA, Spray DC. Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci. 1991; doi: 10.1523/JNEUROSCI.11-05-01421.1991
40. Giaume C, Fromaget C, El Aoumari A, Cordier J, Glowinski J, Grost D. Gap junctions in cultured astrocytes: Single-channel currents and characterization of channel-forming protein. Neuron. 1991; doi: 10.1016/0896-6273(91)90128-M
41. Silberstein SD. Tonabersat, a novel gap-junction modulator for the prevention of migraine. Cephalalgia. 2009; doi: 10.1111/j.1468-2982.2009.01973.x 19723123
42. Naus CCG, Bechberger JF, Paul DL. Gap junction gene expression in human seizure disorder. Exp Neurol. 1991; doi: 10.1016/0014-4886(91)90007-Y
43. Collignon F, Wetjen NM, Cohen-Gadol AA, Cascino GD, Parisi J, Meyer FB, et al. Altered expression of connexin subtypes in mesial temporal lobe epilepsy in humans. J Neurosurg. 2006; doi: 10.3171/jns.2006.105.1.77 16874892
44. Fonseca CG, Green CR, Nicholson LFB. Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. BRAIN Res. 2002; doi: 10.1016/S0006-8993(01)03289–9
45. Jahromi SS, Wentlandt K, Piran S, Carlen PL. Anticonvulsant actions of gap junctional blockers in an in vitro seizure model. J Neurophysiol. 2002; doi: 10.1152/jn.00801.2001
46. Jin MM, Chen Z. Role of gap junctions in epilepsy. Neuroscience Bulletin. 2011. doi: 10.1007/s12264-011-1944-1 22108816
47. Hosseinzadeh H, Nassiri Asl M. Anticonvulsant, sedative and muscle relaxant effects of carbenoxolone in mice. BMC Pharmacol. 2003; doi: 10.1186/1471-2210-3-3 12720572
48. Gajda Z, Szupera Z, Blazsó G, Szente M. Quinine, a blocker of neuronal Cx36 channels, suppresses seizure activity in rat neocortex in vivo. Epilepsia. 2005; doi: 10.1111/j.1528-1167.2005.00254.x 16190928
49. Nassiri-Asl M, Zamansoltani F, Torabinejad B. Antiepileptic effects of quinine in the pentylenetetrazole model of seizure. Seizure. 2009; doi: 10.1016/j.seizure.2008.08.002 18786839
50. Nilsen KE, Kelso ARC, Cock HR. Antiepileptic effect of gap-junction blockers in a rat model of refractory focal cortical epilepsy. Epilepsia. 2006; doi: 10.1111/j.1528-1167.2006.00540.x 16886980
51. Peretz A, Degani N, Nachman R, Uziyel Y, Gibor G, Shabat D, et al. Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol. 2005; doi: 10.1124/mol.104.007112 15598972
52. Parsons AA, Bingham S, Raval P, Read S, Thompson M, Upton N. Tonabersat (SB-220453) a novel benzopyran with anticonvulsant properties attenuates trigeminal nerve-induced neurovascular reflexes. Br J Pharmacol. 2001; doi: 10.1038/sj.bjp.0703932 11264249
53. Manjarrez-Marmolejo J, Franco-Pérez J. Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal Models. Curr Neuropharmacol. 2016;14: 759–771. doi: 10.2174/1570159X14666160603115942 27262601
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania