Inactivating pathogenic bacteria in greywater by biosynthesized Cu/Zn nanoparticles from secondary metabolite of Aspergillus iizukae; optimization, mechanism and techno economic analysis
Autoři:
Efaq Noman aff001; Adel Al-Gheethi aff003; Balkis A. Talip aff002; Radin Mohamed aff003; Amir Hashim Kassim aff003
Působiště autorů:
Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, Taiz, Yemen
aff001; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), KM1, Jalan Panchor, Pagoh, Muar, Johor, Malaysia
aff002; Micro-pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221522
Souhrn
The inactivation of antibiotic resistant Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) seeded in greywater by bimetallic bio-nanoparticles was optimized by using response surface methodology (RSM). The bimetallic nanoparticles (Cu/Zn NPs) were synthesized in secondary metabolite of a novel fungal strain identified as Aspergillus iizukae EAN605 grown in pumpkin medium. Cu/Zn NPs were very effective for inhibiting growth of E. coli and S. aureus. The maximum inactivation was optimized with 0.028 mg mL-1 of Cu/Zn NPs, at pH 6 and after 60 min, at which the reduction of E. coli and S. aureus was 5.6 vs. 5.3 and 5.2 vs. 5.4 log reduction for actual and predicted values, respectively. The inactivation mechanism was described based on the analysis of untreated and treated bacterial cells by Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) revealed a damage in the cell wall structure due to the effect of Cu/Zn NPs. Moreover, the Raman Spectroscopy showed that the Cu/Zn NPs led to degradation of carbohydrates and amino structures on the bacteria cell wall. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed that the destruction take place in the C-C bond of the functional groups available in the bacterial cell wall. The techno economic analysis revealed that the biosynthesis Cu/Zn NPs is economically feasible. These findings demonstrated that Cu/Zn NPs can effectively inhibit pathogenic bacteria in the greywater.
Klíčová slova:
Biology and life sciences – Cell biology – Biochemistry – Organisms – Eukaryota – Engineering and technology – Research and analysis methods – Fungi – Medicine and health sciences – Cellular structures and organelles – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Bacteria – Pathology and laboratory medicine – Pathogens – Health care – Infectious diseases – Public and occupational health – Preventive medicine – Staphylococcus – Staphylococcus aureus – Cell walls – Biosynthesis – Infectious disease control – Spectrum analysis techniques – Nanotechnology – Nanoparticles – Sanitization – Disinfection – Raman spectroscopy
Zdroje
1. Al-Gheethi A, Mohamed R, Efaq A, Amir Hashim M (2016) Reduction of microbial risk associated with greywater by disinfection processes for irrigation. J Water Health, 14(3), 379–398. doi: 10.2166/wh.2015.220 27280605
2. Al-Gheethi AA, Norli I, Kadir MO (2013) Elimination of enteric indicators and pathogenic bacteria in secondary effluents and lake water by solar disinfection (SODIS). J Water Reuse Des 3(1); 39–46.
3. Nasrollahzadeh M, Azarian A, Maham M, Ehsani A (2015) Synthesis of Au/Pd bimetallic nanoparticles and their application in the Suzuki coupling reaction. J Ind Eng Chem, 21, pp.746–748.
4. Liu C, Liu R, Sun Q, Chang J, Gao X, Liu Y, et al. (2015) Controlled synthesis and synergistic effects of graphene-supported Pd/Au bimetallic nanoparticles with tunable catalytic properties. Nanoscale, 7(14), pp.6356–6362. doi: 10.1039/c4nr06855f 25786139
5. Chang L, Li Y (2017) One-step encapsulation of Pt-Co bimetallic nanoparticles within MOFs for advanced room temperature nanocatalysis. Molecular Catalysis, 433, pp.77–83.
6. Dang-Bao T, Pla D, Favier I, Gómez M (2017) Bimetallic nanoparticles in alternative solvents for catalytic purposes. Catalysts, 7(7), p.207.
7. Kruk T, Szczepanowicz K, Stefańska J, Socha R, Warszyński P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and Surfaces B: Biointerfaces, 128, pp.17–22. doi: 10.1016/j.colsurfb.2015.02.009 25723345
8. Carroll K.J., Reveles J.U., Shultz M.D., Khanna S.N. and Carpenter E.E., 2011. Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach. The Journal of Physical Chemistry C, 115(6), pp.2656–2664.
9. Rajathi F.A.A., Parthiban C., Kumar V.G. and Anantharaman P., 2012. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, pp.166–173.
10. Pereira L., Mehboob F., Stams A.J., Mota M.M., Rijnaarts H.H. and Alves M.M., 2015. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Critical Reviews in Biotechnology, 35(1), pp.114–128. doi: 10.3109/07388551.2013.819484 23937251
11. Hulkoti N.I. and Taranath T.C., 2014. Biosynthesis of nanoparticles using microbes—a review. Colloids and Surfaces B: Biointerfaces, 121, pp.474–483. doi: 10.1016/j.colsurfb.2014.05.027 25001188
12. Wang W., Anderson C.F., Wang Z., Wu W., Cui H. and Liu C.J., 2017. Peptide-templated noble metal catalysts: syntheses and applications. Chemical science, 8(5), pp.3310–3324. doi: 10.1039/c7sc00069c 28507701
13. Siddiqi K.S. and Husen A., 2016. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale research letters, 11(1), p.98. doi: 10.1186/s11671-016-1311-2 26909778
14. Chen Y.L., Tuan H.Y., Tien C.W., Lo W.H., Liang H.C. and Hu Y.C., 2009. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnology progress, 25(5), pp.1260–1266. doi: 10.1002/btpr.199 19630084
15. Sanghi R., Verma P., Puri S., Enzymatic Formation of Gold Nanoparticles Using Phanerochaete Chrysosporium, Adv. Chem. Eng. Sci. 01 (2011) 154–162. doi: 10.4236/aces.2011.13023
16. Noman E, Al-Gheethi A, Mohamed R, Kassim A (2019) Identification and characterization of Aspergillus iizukae 605EAN for azo dyes decolourization; Biokinetic and Microstructure Study, Frontiers in Microbiology (Revised)
17. Jain N., Bhargava A., Majumdar S., Tarafdar J.C. and Panwar J., 2011. Extracellular biosynthesis and 7characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale, 3(2), pp.635–641. doi: 10.1039/c0nr00656d 21088776
18. Bhargava A., Jain N., Gangopadhyay S. and Panwar J., 2015. Development of gold nanoparticle-fungal hybrid based heterogeneous interface for catalytic applications. Process Biochemistry, 50(8), pp.1293–1300.
19. Du L., Xu Q., Huang M., Xian L. and Feng J.X., 2015. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Materials Chemistry and Physics, 160, pp.40–47.
20. Singh J., Dutta T., Kim K.H., Rawat M., Samddar P. and Kumar P., 2018. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), p.84. doi: 10.1186/s12951-018-0408-4 30373622
21. Mohammadi-Aloucheh R., Habibi-Yangjeh A., Bayrami A., Latifi-Navid S. and Asadi A., 2018. Enhanced anti-bacterial activities of ZnO nanoparticles and Cu/Zn nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract. Artificial cells, nanomedicine, and biotechnology, 46(sup1), pp.1200–1209. doi: 10.1080/21691401.2018.1448988 29527924
22. APHA, Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association, Water Environment Federation. 9221 B, 9222 B, 9225B, 9230C. 1999.
23. Noman E., Al-Gheethi A., Rahman N., Nagao H., Kadir M., 2016. Assessment of relevant fungal species in clinical solid wastes. Environ. Sci. Poll. Res 23, 19806–19824.\
24. Fell J., Boekhout T., Fonseca A., Scorzetti G., Statzell-Tallman A., Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Sys. Evolut. Microbiol. 50 (2000) 1351–1371.
25. Al-Gheethi A.A., Mohamed R.M.S.R., Efaq A.N., Norli I., Abd Halid A., Amir H.K. et al. 2016. Bioaugmentation process of secondary effluents for reduction of pathogens, heavy metals and antibiotics. Journal of water and health, 14(5), pp.780–795. 27740544
26. Ljunggren M. and Zacchi G., 2010. Techno‐economic evaluation of a two‐step biological process for hydrogen production. Biotechnology progress, 26(2), pp.496–504. doi: 10.1002/btpr.336 20039381
27. Yashni G., Al-Gheethi A., Mohamed R., Hashim A., 2019. Green Synthesis of ZnO Nanoparticles by Coriandrum sativum Leaf Extract: Structural and Optical Propertie. Deslaination and Water Treatment, (Online).
28. Al-Gheethi A.A., Ismail N., Lalung J., Talib A., Efaq A.N. and Kadir M.O.A., 2013. Susceptibility for antibiotics among faecal indicators and pathogenic bacteria in sewage treated effluents. Water Practice and Technology, 8(1), pp.1–6.
29. Morse A. and Jackson A., 2003. Fate of a representative pharmaceutical in the environment. Texas Water Resources Institute.
30. Drawz S. M., Bonomo R. A. 2010. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23 (1): 160–201. doi: 10.1128/CMR.00037-09 20065329
31. Tärnberg M., 2012. Extended-spectrum beta-lactamase producing Enterobacteria-ceae: aspects on detection, epidemiology and multi-drug resistance. Linköping University medical, LiU-Tryck, Linköping, Sweden.
32. British Society for Antimicrobial Chemotherapy, 1991. A guide to sensitivity testing: Report of working party on antibiotic sensitivity testing of the British society for Antimicrobial Chemotherapy. J. Antimicrob. Chemother. 27: 1–50.
33. Shoults D.C. and Ashbolt N.J., 2018. Total staphylococci as performance surrogate for greywater treatment. Environmental Science and Pollution Research, 25(33), pp.32894–32900. doi: 10.1007/s11356-017-9050-1 28462431
34. Al-Gheethi A.A., Efaq A.N., Mohamed R.M., Norli I. and Kadir M.O., 2017. Potential of bacterial consortium for removal of cephalexin from aqueous solution. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1), pp.141–148.
35. Al-Gheethi A.A., Efaq A.N., Bala J.D., Norli I., Abdel-Monem M.O. and Kadir M.A., 2018. Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Applied Water Science, 8(2), p.74.
36. STAATT (2005) Technical assistance manual: state regulatory oversight of medical waste treatment technology. Report of the state and territorial association on alternative treatment technologies (STAATT).
37. Karnan T. and Selvakumar S.A.S., 2016. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye. Journal of molecular Structure, 1125, pp.358–365.
38. Khan S.A., Noreen F., Kanwal S., Iqbal A. and Hussain G., 2018. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Materials Science and Engineering: C, 82, pp.46–59.
39. Siripireddy B. and Mandal B.K., 2017. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Advanced Powder Technology, 28(3), pp.785–797.
40. Senthilkumar N., Aravindhan V., Ruckmani K. and Potheher I.V., 2018. Coriandrum sativum mediated synthesis of silver nanoparticles and evaluation of their biological characteristics. Materials Research Express, 5(5), p.055032.
41. Walsh F., 2013. Investigating antibiotic resistance in non-clinical environments. Frontiers in microbiology, 4, p.19. doi: 10.3389/fmicb.2013.00019 23423602
42. Al-Gheethi, A.A., Aisyah, M., Bala, J.D., Efaq, A.N. and Norli, I., 2015, May. Prevalence of antimicrobial resistance bacteria in non-clinical environment. In 4th international conference on environmental research and technology (ICERT 2015) on (pp. 27–29).
43. Asadi S. and Moeinpour F., 2019. Inactivation of Escherichia coli in water by silver-coated Ni 0.5 Zn 0.5 Fe 2 O 4 magnetic nanocomposite: a Box–Behnken design optimization. Applied Water Science, 9(1), p.23.
44. Song J., Zhang F., Huang Y., Keller A.A., Tang X., Zhang W., et al. 2018. Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environmental Science: Nano, 5(6), pp.1341–1349.
45. Ghorbani H.R. Rashidi R., 2018. Synthesis of Cu–Ag nanoparticles by biological method. Inorganic and Nano-Metal Chemistry, 48(1), pp.41–43.
46. Zhang L., Jiang Y., Ding Y., Daskalakis N., Jeuken L., Povey M., et al. 2010. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 12(5), pp.1625–1636.
47. Guggenberger G., Zech W. and Schulten H.R., 1994. Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Organic Geochemistry, 21(1), pp.51–66.
48. Wang L., Hu C. and Shao L., 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12, p.1227. doi: 10.2147/IJN.S121956 28243086
49. Han W., Fang J., Liu Z. and Tang J., 2016. Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresource technology, 202, pp.107–112. doi: 10.1016/j.biortech.2015.11.072 26706723
50. Han W., Yan Y., Gu J., Shi Y., Tang J. and Li Y., 2016. Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H2 production from food waste. International Journal of Hydrogen Energy, 41(48), pp.22619–22625.
51. Kwan T.H., Pleissner D., Lau K.Y., Venus J., Pommeret A. and Lin C.S.K., 2015. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste. Bioresource technology, 198, pp.292–299. doi: 10.1016/j.biortech.2015.09.003 26402872
52. Han W., Hu Y., Li S., Huang J., Nie Q., Zhao H. et al. 2017. Simultaneous dark fermentative hydrogen and ethanol production from waste bread in a mixed packed tank reactor. Journal of cleaner production, 141, pp.608–611.
53. Vlysidis A., Binns M., Webb C. and Theodoropoulos C., 2011. A techno-economic analysis of biodiesel biorefineries: assessment of integrated designs for the co-production of fuels and chemicals. Energy, 36(8), pp.4671–4683.
Článok vyšiel v časopise
PLOS One
2019 Číslo 9
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania